精英家教网 > 高中数学 > 题目详情

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为aEPC的中点.

(1)求证:PA∥平面BDE

(2)求证:平面PAC⊥平面BDE

【答案】(1)证明见解析;(2)证明见解析.

【解析】

(1) 连结OE,证明OE∥PA,即证PA∥平面BDE.(2)先证明BD⊥平面PAC,再证明平面PAC⊥平面BDE.

(1)证明:连结OE,如图所示.

∵O,E分别为AC,PC的中点,

∴OE∥PA.

∵OE平面BDE,PA平面BDE,

∴PA∥平面BDE.

(2)证明:∵PO⊥平面ABCD,

∴PO⊥BD.

在正方形ABCD中,BD⊥AC.

又∵PO∩AC=O,

∴BD⊥平面PAC.

又∵BD平面BDE,

∴平面PAC⊥平面BDE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是双曲线C的左,右焦点,O是坐标原点C的一条渐近线的垂线,垂足为P,若,则C的离心率为  

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有5张编号依次为1,2,3,4,5的卡片,这5张卡片除号码外完全相同,现进行有放回的连续抽取两次,每次任意地取出一张卡片.

(1)求出所有可能结果数,并列出所有可能结果;

(2)求事件“取出卡片的号码之和不小于7”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:

A类

第x次

1

2

3

4

4

分数y(满足150)

145

83

95

72

110

B类

第x次

1

2

3

4

4

分数y(满足150)

85

93

90

76

101

C类

第x次

1

2

3

4

4

分数y(满足150)

85

92

101

100

112

(1)经计算己知A,B的相关系数分别为.,请计算出C学生的的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,越大认为成绩越稳定)

(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为,利用线性回归直线方程预测该生第十次的成绩.

附相关系数,线性回归直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形是直角梯形,,平面平面.

(1)求证:平面

(2)在线段上是否存在一点,使得平面与平面所成的锐二面角的余弦值为,若存在,求出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,

(1)求实数m的值;

(2)判断函数的单调性并用定义法加以证明;

(3)若函数上的最小值为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)如图,设的内角所对的边分别为,若成等比数列,成等差数列,外一点,,下列说法中,正确的是(

A.B.是等边三角形

C.四点共圆,则D.四边形面积无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.若曲线和曲线都过点,且在点处有相同的切线.

(Ⅰ)求的值;

(Ⅱ)若时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)当,求函数的单调区间;

Ⅱ)当,证明.

查看答案和解析>>

同步练习册答案