精英家教网 > 高中数学 > 题目详情
1.如图,正方体ABCD-A1B1C1D1,E,F分别在AB1,BC1上,且$\frac{{B}_{1}E}{AE}$=$\frac{{C}_{1}F}{BF}$=2,过EF做一个平面和面ABCD相交,并找到交线,写出作法.(注意:交线必须是由两个确定的点的连线)

分析 连结B1F并延长,交BC于G,连结AG,则AG即为过EF做一个平面和面ABCD相交的交线.

解答 解:连结B1F并延长,交BC于G,连结AG,
∵B1C1∥BG,∴$\frac{{B}_{1}F}{FG}=\frac{{C}_{1}F}{BF}$,
∵$\frac{{B}_{1}E}{AE}$=$\frac{{C}_{1}F}{BF}$=2,∴$\frac{{B}_{1}E}{AE}=\frac{{B}_{1}F}{GF}$,
∴EF∥AG,
∵过EF做一个平面和面ABCD相交,
∴交线为AG.

点评 本题考查两个平面相交的交线的判断与作法,是基础题,解题时要注意平行线分线段成比例定理及其推论的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Acos(ωx+$\frac{π}{4}$ω)(A>0)在(0,$\frac{π}{8}$)上是减函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=lg(2-x)定义域为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆的焦点为(-1,0)和(1,0).点P(2,0)在椭圆上,则椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商品的进价是40元/kg,现在的售价是60元/kg,每周可卖出300kg.根据市场调查,该商品每涨价1元,每周要少卖出10kg;每降价1元,每周可多卖出20kg.如果要对该商品涨价,那么涨价的范围是多少才能使每周的利润不少于6240元?如果要对该商品降价,那么降价的范围是多少才能使每周的利润不少于6240元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=1+lgx(x>0),f(x)的反函数为f-1(x),则f(1)+f-1(x)=10x-1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的函数f(x)满足:对于任意x,都有f(x)=f(x-1)+f(x+1),则f(x)的一个周期为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的通项公式为an=pn+$\frac{q}{n}$,且a2=$\frac{3}{2}$,a4=$\frac{3}{2}$,则a8=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的定义域.
(1)y=lg($\frac{\sqrt{2}}{2}$-sinx).
(2)y=$\sqrt{3tanx-\sqrt{3}}$.

查看答案和解析>>

同步练习册答案