精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.

(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;

(2)设点为曲线上的动点,求的取值范围.

【答案】(1), 为参数);(2) .

【解析】试题分析:

1)由公式可化点的极坐标为直角坐标,也可化曲线的极坐标方程为直角坐标方程,由直角坐标方程知曲线是圆,且圆心坐标与半径都已知,可由圆的标准参数方程可得;

2)利用参数方程设出点坐标,由两点间距离公式求得,应用两角和与差的正弦公式化表达式为形式,再结合正弦函数性质可得取值范围.

试题解析:

(1)由,解得

因为,所以, ,即

所以曲线的参数方程为: 为参数);

(2)不妨设

因为,所以

因此, 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的首项.

(1)证明:数列是等比数列;

(2)求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=4sin(2x+ )(x∈R),有下列命题:
①y=f(x)的表达式可改写为y=4cos(2x﹣ );
②y=f(x)是以2π为最小正周期的周期函数;
③y=f(x)的图象关于点 对称;
④y=f(x)的图象关于直线x=﹣ 对称.
其中正确的命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1 , a11 , a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A′B′C′D′.

(1)设M,N分别是A′D′,A′B′的中点,试在下列三个正方体中各作出一个过正方体顶点且与平面AMN平行的平面(不用写过程)
(2)设S是B′D′的中点,F,G分别是DC,SC的中点,求证:直线GF∥平面BDD′B′.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<α< <β<π,tan ,cos(β﹣α)=
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函数f(x)的零点;
(2)若f(x)同时满足下列条件:①当x=﹣1时,函数f(x)有最小值0,②f(1)=1求函数f(x)的解析式;
(3)若f(1)≠f(3),证明方程f(x)= [f(1)+f(3)]必有一个实数根属于区间(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知椭圆的短轴长为,且与抛物线有共同的焦点,椭圆的左顶点为A,右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点.

I)求椭圆的方程;

)求线段的长度的最小值;

)在线段的长度取得最小值时,椭圆上是否存在一点,使得的面积为,若存在求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形为矩形, 为等腰三角形, 平面平面,且 分别为的中点.

)证明: 平面

)证明:平面平面

)当上的动点满足什么条件时,使三棱锥的体积与四棱锥体积的比值为,并证明你的结论.

查看答案和解析>>

同步练习册答案