精英家教网 > 高中数学 > 题目详情
4.如图,在△ABC中,已知B=$\frac{π}{4}$,D是BC边上一点,AD=10,AC=14,DC=6,则AB=5$\sqrt{6}$.

分析 根据余弦定理弦求出C的大小,利用正弦定理即可求出AB的长度.

解答 解:∵AD=10,AC=14,DC=6,
∴由余弦定理得cosC=$\frac{A{C}^{2}+C{D}^{2}-A{D}^{2}}{2AC•CD}$=$\frac{1{4}^{2}+{6}^{2}-1{0}^{2}}{2×14×6}$=$\frac{11}{14}$,
∴sinC=$\sqrt{1-(\frac{11}{14})^{2}}$=$\frac{5\sqrt{3}}{14}$,
由正弦定理得$\frac{AB}{sinC}=\frac{AC}{sinB}$,
即AB=$\frac{AC•sinC}{sinB}$=5$\sqrt{6}$,
故答案为:5$\sqrt{6}$.

点评 本题主要考查解三角形的应用,利用余弦定理和正弦定理是解决本题的关键,要求熟练掌握相应的公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,则f(f(-1))的值为(  )
A.-1B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,如果sinA:sinB:sinC=2:3:4,那么tanC=-$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,$\frac{{a}_{n+1}}{{a}_{n}}$=2,a1=$\frac{1}{2}$,则a1+a2+a3+…+an=$\frac{{2}^{n}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-ax2-3a2x+b(a,b∈R).
(Ⅰ)若曲线f(x)在点(1,f(1))处的切线方程为y=1,求a,b的值;
(Ⅱ)求f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{1}{1-x}$+lg(2+x)的定义域是(  )
A.(-2,+∞)B.(-∞,-2)C.(-2,1)D.(-2,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{12}x|}&{0<x≤12}\\{-\frac{1}{3}x+5}&{x>12}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
A.(1,12)B.(4,5)C.(12,15)D.(24,30)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三个数a=0.152,b=20.15,c=log20.15之间的大小关系是(  )
A.c<a<bB.c<b<aC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在数列{an}中,a1=1,an+1=(-1)n(an +1),记Sn为{an}的前n项和,则S2015=(  )
A.-1008B.-1007C.-1006D.-1005

查看答案和解析>>

同步练习册答案