精英家教网 > 高中数学 > 题目详情

函数上是减函数,且为奇函数,满足,试求的范围.

解析试题分析:由于函数在(-1,1)上是减函数,且为奇函数.所以由可得. .即.所以可得.可解得.
试题解析:由题意,,即
而又函数为奇函数,所以.又函数在(-1,1)上是减函数,有.所以,的取值范围是
考点:1.函数的单调性.2.函数的奇偶性.3.不等式组的解法.4.二次不等式的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,函数.

(1)当时,画出函数的大致图像;
(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,函数的图像在点处的切线方程;
(2)当时,解不等式
(3)当时,对,直线的图像下方.求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当a=3时,求函数上的最大值和最小值;
(Ⅱ)求函数的定义域,并求函数的值域。(用a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)当时,判断的奇偶性,并说明理由;
(Ⅱ)当时,若,求的值;
(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已函数是定义在上的奇函数,在上时
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义域为的奇函数满足,且当时,.
(Ⅰ)求上的解析式;
(Ⅱ)若存在,满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义域为的单调减函数,且是奇函数,当时,
(1)求的解析式;(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求值;
(Ⅱ)判断并证明该函数在定义域R上的单调性;
(Ⅲ)设关于的函数有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案