精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,2)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.
分析:(1)先由题意知:|AQ|=|AF,再依据A为PF的中点且点A在抛物线上,求得p值,从而得出抛物线方程;
(2)设A(x,y),y2=2px,根据题意:∠MAF为锐角根据向量的数量积得出:
AM
AF
>0
对x≥0都成立,令f(x)=x2+(
3p
2
-m)x+
pm
2
>0对x≥0都成立,下面结合二次函数的性质分类讨论,即可求得m的取值范围即可.
解答:解:(1)由题意知:|AQ|=|AF|,
∵∠PQF=90°,∴A为PF的中点,
F(
p
2
,0),  ∴ A(
p
4
,1)

且点A在抛物线上,代入得1=2p•
p
4
p=
2

所以抛物线方程为y2=2
2
x
.…(5分)
(2)设A(x,y),y2=2px,
根据题意:∠MAF为锐角
AM
AF
>0
m≠
p
2

AM
=(m-x,-y), 
AF
=(
p
2
-x,-y)
AM
AF
>0⇒(x-m)(x-
p
2
)+y2>0⇒x2-(
p
2
+m)x+
pm
2
+y2>0

∵y2=2px,所以得x2+(
3p
2
-m)x+
pm
2
>0
对x≥0都成立
f(x)=x2+(
3p
2
-m)x+
pm
2
=(x+
3p
4
-
m
2
)2+
mp
2
-(
3p
4
-
m
2
)2>0

对x≥0都成立…(9分)
①若
m
2
-
3p
4
≥0
,即m≥
3p
2
时,只要使
mp
2
-(
3p
4
-
m
2
)2>0
成立,
整理得:4m2-20mp+9p2<0⇒
p
2
<m<
9p
2
,且m≥
3p
2

所以
3p
2
≤m<
9p
2
.…(11分)
②若
m
2
-
3p
4
<0
,即m<
3p
2
,只要使
mp
2
>0
成立,得m>0
所以0<m<
3p
2
…(13分)
由①②得m的取值范围是0<m<
9p
2
m≠
p
2
.…(15分)
点评:本题主要考查了抛物线的标准方程、抛物线的简单性质,同时考查了向量的数量积,考查了计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案