精英家教网 > 高中数学 > 题目详情
已知数列{an}各项均为正数,其前n项和为Sn,点(an,Sn)在曲线(x+1)2=4y上.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设数列{bn}满足b1=3,bn+1=abncn=
bn
bn-1
+
bn-1-2
bn-1-1
,求数列cn的前n项和为Tn
分析:(Ⅰ)将点代入到曲线方程中,得到an和Sn的关系式,再由an=Sn-Sn-1,能够得到an的通项公式.
(Ⅱ)由bn+1=abn,an=2n-1,知bn+1=2bn-1,bn+1-1=2(bn-1),即
bn+1-1
bn-1
=2
,从而能得到cn=
bn
bn-1
+
bn-1-2
bn-1-1
=
2n+1
2n
+
2n-1-1
2n-1
=
2n+1-1
2n
=2- 
1
2n
,进而得到Tn
解答:解:(Ⅰ)因为(an+1)2=4Sn,所以Sn=
(an+1)2
4
Sn+1=
(an+1+1)2
4

所以Sn+1-Sn=
(an+1+1)2-(an+1)2
4

即4an+1=an+12-an2+2an+1-2an,所以2(an+1+an)=(an+1+an)(an+1-an
因为an+1+an≠0,所以an+1-an=2,
即数列{an}为公差等于2的等差数列
则(a1+1)2=4a1,解得a1=1,所以an=2n-1
(Ⅱ)因为bn+1=abn,an=2n-1,所以bn+1=2bn-1
∴bn+1-1=2(bn-1),即
bn+1-1
bn-1
=2

所以数列{bn-1}是以2为公比的等比数列
又b1=3,所以b1-1=2
故bn-1=2•2n-1,即bn=2n+1
所以cn=
bn
bn-1
+
bn-1-2
bn-1-1
=
2n+1
2n
+
2n-1-1
2n-1
=
2n+1-1
2n
=2- 
1
2n

Tn=2n-  [1-(
1
2
)
n
]
=2n-1+(
1
2
)
n
点评:本题考查数列通项公式的求法和数列前n项和的计算.在对已知an和Sn的关系式中,往往都是利用迭代的方法,an=Sn-Sn-1.在数列求和时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p为大于1的常数),则an=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,观察下面的程序框图
(1)若d≠0,分别写出当k=2,k=3时s的表达式.
(2)当输入a1=d=2,k=100 时,求s的值( 其中2的高次方不用算出).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知数列{an}各项为正数,前n项和Sn=
1
2
an(an+1)

(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
3an
2
b
2
n
,数列{cn}前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p≠±1的常数),记f(n)=
1+
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an
2nSn

(Ⅰ)求an
(Ⅱ)求
lim
n→∞
f(n+1)
f(n)

(Ⅲ)当p>1时,设bn=
p+1
2p
-
f(n+1)
f(n)
,求数列{pk+1bkbk+1}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,满足n
a
2
n
+(1-n2)a n-n=0

(1)计算a1,a2,并求数列{an}的通项公式;
(2)求数列{
an
2n
}
的前n项和Sn

查看答案和解析>>

同步练习册答案