精英家教网 > 高中数学 > 题目详情
16.f(x)=$\frac{2}{3}$x3-x2+ax-1己知曲线存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a的取值范围为(  )
A.(3,+∞)B.(3,$\frac{7}{2}$)C.(-∞,$\frac{7}{2}$]D.(0,3)

分析 求得f(x)的导数,由题意可得2x2-2x+a-3=0有两个不等的正根,运用判别式大于0,两根之和大于0,两根之积大于0,解不等式即可得到a的范围.

解答 解:f(x)=$\frac{2}{3}$x3-x2+ax-1的导数为f′(x)=2x2-2x+a,
由题意可得2x2-2x+a=3,即2x2-2x+a-3=0有两个不等的正根,
则△=4-8(a-3)>0,x1+x2=1>0,x1x2=$\frac{1}{2}$(a-3)>0,
解得3<a<$\frac{7}{2}$.
故选B.

点评 本题考查导数的几何意义,考查二次方程实根的分布,以及韦达定理的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别是F1、F2,离心率为$\frac{{\sqrt{3}}}{3}$,过点F2的直线交椭圆C于A、B两点,且△AF1B的周长为$4\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)若过定点M(0,-2)的动直线l与椭圆C相交P,Q两点,求△OPQ的面积的最大值(O为坐标原点),并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)是定义在R上的函数,若对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(-1)=0,则f(2015)的值是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线y=x+1与曲线y=1nx+a相切,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={x|x2-x+m=0},B={x|x2+px+q=0},且A∩B={1},A∪B=A.
(1)求实数m的值;
(2)求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知∠BCA=$\frac{π}{4}$,BC=$\sqrt{2}$,AC=3,则sin∠ABC=(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(0)=0,且f(x+1)-f(x)=-2x+1.
(1)求二次函数f(x)的解析式;
(2)若不等式mf(x)>(m-1)(2x-1)对m∈[-2,2]恒成立,求实数x的取值范围;
(3)是否存在这样的正数a、b,当x∈[a,b]时,f(x)的值域为$[\frac{1}{b},\frac{1}{a}]$,若存在,求出所有的正数a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题中:
①△ABC中,A>B?sinA>sinB
②数列{an}的前n项和Sn=n2-2n+1,则数列{an}是等差数列.
③锐角三角形的三边长分别为3,4,a,则a的取值范围是$\sqrt{7}$<a<5.
④若Sn=2-2an,则{an}是等比数列
真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1与双曲线x2-$\frac{{y}^{2}}{3}$=1
(1)证明二者焦点相同,并求出焦点坐标.
(2)已知二者的一个交点为P,焦点分别为F1,F2,求|PF1|的值.

查看答案和解析>>

同步练习册答案