精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足:a1= ,a2= ,2an=an+1+an1(n≥2,n∈N),数列{bn}满足:b1<0,3bn﹣bn1=n(n≥2,n∈R),数列{bn}的前n项和为Sn
(1)求证:数列{bn﹣an}为等比数列;
(2)求证:数列{bn}为递增数列;
(3)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.

【答案】
(1)解:∵2an=an+1+an1(n≥2,n∈N),

∴{an}是等差数列.

又∵a1= ,a2=

,(n≥2,n∈N*),

∴bn+1﹣an+1=

= =

=

又∵

∴{bn﹣an}是以 为首项,以 为公比的等比数列.


(2)证明:∵bn﹣an=(b1 )( n1

当n≥2时,bn﹣bn1=

又b1<0,∴bn﹣bn1>0.

∴{bn}是单调递增数列.


(3)解:∵当且仅当n=3时,Sn取最小值.

,即

∴b1∈(﹣47,﹣11)


【解析】(1)由已知得{an}是等差数列, ,bn+1﹣an+1= = .由此能证明{bn﹣an}是以 为首项,以 为公比的等比数列.(2)由 .得当n≥2时,bn﹣bn1= .由此能证明{bn}是单调递增数列.(3)由已知得 ,由此能求出b1的取值范围.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数的最小值为1.

(1)求的值;

(2)若,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos(ωx+ )(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0, ],f(5α+ )=﹣ ,f(5β﹣ )= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2+ax+3.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围.
(2)当x∈[﹣2,2]时,f(x)≥a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(
A.130
B.170
C.210
D.260

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断:
①从个体编号为1,2,…,1000的总体中抽取一个容量为50的样本,若采用系统抽样方法进行抽取,则分段间隔应为20;
②已知某种彩票的中奖概率为 ,那么买1000张这种彩票就一定会中奖(假设该彩票有足够的张数);
③从装有2个红球和2个黒球的口袋内任取2个球,恰有1个黒球与恰有2个黒球是互斥但不对立的两个事件;
④设具有线性相关关系的变量的一组数据是(1,3),(2,5),(3,6),(6,8),则它们的回归直线一定过点(3, ).
其中正确的序号是( )
A.①、②、③
B.①、③、④
C.③、④
D.①、③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,椭圆上任意一点到右焦点距 离的最大值为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点作直线与曲线交于两点,点满足为坐标原点),求四边形面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)与直线x+y﹣1=0相交于A、B两点,若a∈[ ],且以AB为直径的圆经过坐标原点O,则椭圆离心率e的取值范围为

查看答案和解析>>

同步练习册答案