精英家教网 > 高中数学 > 题目详情
13.已知f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$(b<0)的值域为[1,3].
(1)求b,c的值;
(2)判断f(x)在区间[-1,1]上的单调性,并证明.

分析 (1)分离常数法化简f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$=2+$\frac{bx+c-2}{{x}^{2}+1}$;运用判别式大于等于0,从而求b,c.
(2)利用(1)化简函数的解析式,通过函数的导数求解函数的单调性.

解答 解:(1)∵f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$=2+$\frac{bx+c-2}{{x}^{2}+1}$;
∴-1≤$\frac{bx+c-2}{{x}^{2}+1}$≤1;
∴y=$\frac{bx+c-2}{{x}^{2}+1}$(x∈R)即为
yx2-bx+y-c+2=0有实根.
即有判别式△≥0,即有b2-4y(y-c+2)≥0,
即有4y2-4(c-2)y-b2≤0,
由-1,1是方程4y2-4(c-2)y-b2=0的两根.
即有c=2,b=-2.
综上所述,b=-2,c=2.
(2)f(x)在x∈[-1,1]上的单调递减.
∵设u=f(x)=$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$=$\frac{2{x}^{2}-2x+2}{{x}^{2}+1}$=2-$\frac{2x}{{x}^{2}+1}$.
∴f′(x)=$\frac{2{(x}^{2}-1)}{({x}^{2}+1)^{2}}$,
∵x∈[-1,1]
∴f′(x)<0,
∴f(x)在x∈[-1,1]上的单调递减.

点评 本题考查了函数的值域的应用,函数的导数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

科目:高中数学 来源: 题型:

查看答案和解析>>

同步练习册答案