如图,在三棱柱中,
是正方形的中心,,平面,且
(Ⅰ)求异面直线AC与A1B1所成角的余弦值;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱的中点,点在平面内,且平面,求线段的
长.
|
.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分.
方法一:如图所示,建立空间直角坐标系,点B为坐标原点.
依题意得
(I)解:易得,
于是
所以异面直线AC与A1B1所成角的余弦值为
(II)解:易知
设平面AA1C1的法向量,
则即
不妨令可得,
同样地,设平面A1B1C1的法向量,
则即不妨令,
可得
于是
从而
所以二面角A—A1C1—B的正弦值为
(III)解:由N为棱B1C1的中点,
得设M(a,b,0),
则
由平面A1B1C1,得
即
解得故
因此,所以线段BM的长为
方法二:
(I)解:由于AC//A1C1,故是异面直线AC与A1B1所成的角.
因为平面AA1B1B,又H为正方形AA1B1B的中心,
可得
因此
所以异面直线AC与A1B1所成角的余弦值为
(II)解:连接AC1,易知AC1=B1C1,
又由于AA1=B1A1,A1C1=A1=C1,
所以≌,过点A作于点R,
连接B1R,于是,故为二面角A—A1C1—B1的平面角.
在中,
连接AB1,在中,
,
从而
所以二面角A—A1C1—B1的正弦值为
(III)解:因为平面A1B1C1,所以
取HB1中点D,连接ND,由于N是棱B1C1中点,
所以ND//C1H且.
又平面AA1B1B,
所以平面AA1B1B,故
又
所以平面MND,连接MD并延长交A1B1于点E,
则
由
得,延长EM交AB于点F,
可得连接NE.
在中,
所以
可得
连接BM,在中,
科目:高中数学 来源: 题型:
π |
3 |
π |
4 |
查看答案和解析>>
科目:高中数学 来源:2010-2011学年海南省海口市高三高考调研考试理科数学 题型:选择题
如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则与平面所成的角是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013届浙江省高一下学期期末考试数学试卷 题型:解答题
(本小题满分12分)如图,在三棱柱中,面,,,分别为,的中点.
(1)求证:∥平面; (2)求证:平面;
(3)直线与平面所成的角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com