【题目】设全集U=R,若集合M={y|y= },N={x|y=lg },则(CUM)∩N=( )
A.(﹣3,2)
B.(﹣3,0)
C.(﹣∞,1)∪(4,+∞)
D.(﹣3,1)
【答案】D
【解析】解:由集合的意义,可得M为函数y= 的值域, 令t=2x﹣x2+3,t≥0,
由二次函数的性质可得t=﹣x2+2x+3=﹣(x﹣1)2+4,易得t≤4,
则0≤t≤4,进而可得0≤ ≤2;
在y= 中,有1≤y≤4;
即M={y|1≤y≤4},则(CUM)={y|y<1或y>4};
集合N为函数y=lg 的定义域,则 >0,
解可得﹣3<x<2,
即N={x|﹣3<x<2};
则(CUM)∩N={x|﹣3<x<1}=(﹣3,1);
故选D.
【考点精析】本题主要考查了交、并、补集的混合运算和对数函数的定义域的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法;对数函数的定义域范围:(0,+∞)才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设f(x)=ax3+bx+c为奇函数其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f/(x)的最小值为-12
(1)求a,b,c的值
(2)求函数极大值和极小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知过点的直线的参数方程是(为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)若直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C的对边分别为a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设复数z1=(a2-4sin2θ)+(1+2cos θ)i,a∈R,θ∈(0,π),z2在复平面内对应的点在第一象限,且z=-3+4i.
(1)求z2及|z2|.
(2)若z1=z2,求θ与a2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 与双曲线 ,给出下列说法,其中错误的是( )
A.它们的焦距相等
B.它们的焦点在同一个圆上
C.它们的渐近线方程相同
D.它们的离心率相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-ln x,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程.
(2)讨论f(x)的单调性.
(3)是否存在a,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com