精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,若集合M={y|y= },N={x|y=lg },则(CUM)∩N=(
A.(﹣3,2)
B.(﹣3,0)
C.(﹣∞,1)∪(4,+∞)
D.(﹣3,1)

【答案】D
【解析】解:由集合的意义,可得M为函数y= 的值域, 令t=2x﹣x2+3,t≥0,
由二次函数的性质可得t=﹣x2+2x+3=﹣(x﹣1)2+4,易得t≤4,
则0≤t≤4,进而可得0≤ ≤2;
在y= 中,有1≤y≤4;
即M={y|1≤y≤4},则(CUM)={y|y<1或y>4};
集合N为函数y=lg 的定义域,则 >0,
解可得﹣3<x<2,
即N={x|﹣3<x<2};
则(CUM)∩N={x|﹣3<x<1}=(﹣3,1);
故选D.
【考点精析】本题主要考查了交、并、补集的混合运算和对数函数的定义域的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法;对数函数的定义域范围:(0,+∞)才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=ax3+bx+c为奇函数其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f/(x)的最小值为-12

(1)求a,b,c的值

(2)求函数极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知过点的直线的参数方程是为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程式为.

)求直线的普通方程和曲线的直角坐标方程;

)若直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z1=(a2-4sin2θ)+(1+2cos θ)i,aR,θ(0,π),z2在复平面内对应的点在第一象限,且z=-3+4i.

(1)z2|z2|.

(2)z1z2,求θa2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率

(1)求椭圆的标准方程

(2)若分别是椭圆的左、右焦点,过的直线与椭圆交于不同的两点,求的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 与双曲线 ,给出下列说法,其中错误的是(
A.它们的焦距相等
B.它们的焦点在同一个圆上
C.它们的渐近线方程相同
D.它们的离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2-ln x,a∈R.

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程.

(2)讨论f(x)的单调性.

(3)是否存在a,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案