精英家教网 > 高中数学 > 题目详情
10.函数f(θ)=sin$\frac{θ}{2}$cos$\frac{π}{6}$-2cos2$\frac{θ}{4}$cos$\frac{π}{3}$的单调递减区间为[$\frac{4π}{3}$+4kπ,$\frac{10π}{3}$+4kπ],k∈Z.

分析 化简得f(θ)=sin($\frac{θ}{2}$-$\frac{π}{6}$)-$\frac{1}{2}$.令$\frac{π}{2}$+2kπ≤$\frac{θ}{2}$-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解出答案.

解答 解:f(θ)=$\frac{\sqrt{3}}{2}$sin$\frac{θ}{2}$-cos2$\frac{θ}{4}$=$\frac{\sqrt{3}}{2}$sin$\frac{θ}{2}$-$\frac{1}{2}$cos$\frac{θ}{2}$-$\frac{1}{2}$=sin($\frac{θ}{2}$-$\frac{π}{6}$)-$\frac{1}{2}$.
令$\frac{π}{2}$+2kπ≤$\frac{θ}{2}$-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,解得:$\frac{4π}{3}$+4kπ≤θ≤$\frac{10π}{3}$+4kπ,
∴f(θ)的单调递减区间是[$\frac{4π}{3}$+4kπ,$\frac{10π}{3}$+4kπ],k∈Z.
故答案为[$\frac{4π}{3}$+4kπ,$\frac{10π}{3}$+4kπ],k∈Z.

点评 本题考查了三角函数的恒等变换与三角函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={2014,2015},非空集合B满足A∪B={2014,2015},则满足条件的集合B的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.方程lg(2x+1)+lgx=1的解集为{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求sin(α-$\frac{π}{6}$)的值;
(Ⅱ)求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若全集U=R,集合A={x|x2+4x+3>0},B={x|log3(2-x)≤1},则∁U(A∩B)=(  )
A.{x|x<-1或x>2}B.{x|x<-1或x≥2}C.{x|x≤-1或x>2}D.{x|x≤-1或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+α),其中α是常数.
(1)设f(x)=cosx+sinx,$α=\frac{π}{2}$,求g(x)的解析式;
(2)设计一个函数f(x)及一个α的值,使得$g(x)=2cosx(cosx+\sqrt{3}sinx)$;
(3)当f(x)=|sinx|+cosx,$α=\frac{π}{2}$时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.锅中煮有肉馅、三鲜馅、菌菇馅的水饺各5个,这三种水饺的外形完全相同.从中任意舀取4个水饺,则每种水饺都至少取到1个的概率为$\frac{50}{91}$.(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sinα<0,cosα<0,则α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x+1)是定义域为R的偶函数,且f(x)在[1,+∞)上单调递减,则不等式f(2x-1)>f(x+2)的解集为($\frac{1}{3}$,3).

查看答案和解析>>

同步练习册答案