精英家教网 > 高中数学 > 题目详情
10.计算:(lg5)2+lg2•lg50-log89•log2732=-$\frac{1}{9}$.

分析 利用对数性质、运算法则、换底公式求解.

解答 解::(lg5)2+lg2•lg50-log89•log2732
=(lg5)2+lg2(lg2+2lg5)-$\frac{lg9}{lg8}×\frac{lg32}{lg27}$
=(lg5)2+(lg2)2+2lg2×lg5-$\frac{2lg3}{3lg2}×\frac{5lg2}{3lg3}$
=(lg5+lg2)2-$\frac{2}{3}×\frac{5}{3}$
=1-$\frac{10}{9}$
=-$\frac{1}{9}$.
故答案为:$-\frac{1}{9}$.

点评 本题考查对数式化简求值,是基础题,解题时要认真审题,注意对数性质、运算法则、换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.集合A={x||x-1|<1},B={x|-2≤x<2},则A∩B=(  )
A.(0,2)B.[0,2)C.[-2,0)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在各项为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(1)求数列{an}的通项公式;
(2)设Sn为{an}的前n项和,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图是一个奖杯三视图,试根据奖杯三视图计算它的表面积与体积.(尺寸单位:cm,取$π≈3,\sqrt{34}≈6$,结果精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)={x^2}-\frac{2}{3}a{x^3}({a>0,x∈R})$
(1)求f(x)的单调区间和极值.
(2)若g(x)=f(x)-1有三个零点,求实数a的取值范围.
(3)若对?x1∈(2,+∞),?x2∈(1,+∞),使得f(x1)•f(x2)=1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.空间中任意放置的棱长为2的正四面体ABCD.下列命题正确的是个数是(  ) 个
①正四面体ABCD的主视图面积可能是$\sqrt{2}$;
②正四面体ABCD的主视图面积可能是$\frac{2\sqrt{6}}{3}$;
③正四面体ABCD的主视图面积可能是$\sqrt{3}$;
④正四面体ABCD的主视图面积可能是2
⑤正四面体ABCD的主视图面积可能是4.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C所对的边分别是a,b,c,满足cosA=$\frac{3}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(1)求△ABC的面积;   
(2)若b-c=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=$\sqrt{2}$,AA1=3,D是BC的中点,点E在棱BB1
(1)证明:AD⊥C1E
(2)当BE=1时,求三棱锥C1-A1B1E的体积.

查看答案和解析>>

同步练习册答案