精英家教网 > 高中数学 > 题目详情
(2013•烟台二模)已知f(x)=
1
4
x2+sin(
π
2
+x)
,f′(x)为f(x)的导函数,则f′(x)的图象是(  )
分析:先化简f(x)=
1
4
x2+sin(
π
2
+x)
=
1
4
x2+cosx,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数(-
π
3
π
3
)上单调增减,从而排除C,即可得出正确答案.
解答:解:由f(x)=
1
4
x2+sin(
π
2
+x)
=
1
4
x2+cosx,
∴f'(x)=
1
2
x-sinx,它是一个奇函数,其图象关于原点对称,故排除B,D.
又f''(x)=
1
2
-cosx,当-
π
3
<x<
π
3
时,cosx>
1
2
,∴f''(x)<0,
故函数y=f'(x)在区间(-
π
3
π
3
)上单调递减;
故排除C.
故选A.
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•烟台二模)在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12.q=
S2
b2

(Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn=
1
Sn
,求的{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)已知二次函数f(x)=ax2+bx+c的导函数f′(x)满足:f′(0)>0,若对任意实数x,有f(x)≥0,则
f(1)
f′(0)
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)设p:f(x)=lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)将函数f(x)=3sin(4x+
π
6
)图象上所有点的横坐标伸长到原来的2倍,再向右平移
π
6
个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)已知i为虚数单位,复数z=
1-2i
2-i
,则复数z的虚部是(  )

查看答案和解析>>

同步练习册答案