精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为分别为左,右焦点,分别为左,右顶点,D为上顶点,原点到直线的距离为.设点在第一象限,纵坐标为t,且轴,连接交椭圆于点.

(1)求椭圆的方程;

(2)(文)若三角形的面积等于四边形的面积,求直线的方程;

(理)求过点的圆方程(结果用t表示)

【答案】(1).

(2)(文)

【解析】

(1)通过已知条件求出离心率以及利用点到直线的距离公式求解ab,即可得到椭圆方程.

(文)设t>0,直线PA的方程为,联立直线与椭圆方程,求出C的坐标,表示三角形的面积求出t,即可得到PA的方程.

(理)求出BP的垂直平分线BC的垂直平分线为,求出圆心坐标,得到圆的方程即可.

(1)因为椭圆的由离心率为

所以,所以直线的方程为

到直线的距离为,所以

所以

所以椭圆的方程为.

(2)(文)

直线的方程为

,整理得

解得:,则点的坐标是

因为三角形的面积等于四边形的面积,所以三角形的面积等于三角形的面积,

,解得.

所以直线的方程为.

直线的方程为

,整理得

解得:,则点的坐标是

因为

所以的垂直平分线

的垂直平分线为

所以过三点的圆的圆心为

则过三点的圆方程为

即所求圆方程为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

1)求a的值,并证明R上的增函数;

2)若关于t的不等式f(t22t)f(2t2k)0的解集非空,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下面两个的相关命题的逆命题、否命题、逆否命题,并判断它们的真假:

1)命题:若,则.

逆命题:_______________________________________________________________

逆否命题:_____________________________________________________________

2)命题:设是实数,如果,那么有实数根。

否命题:_______________________________________________________________

逆否命题:_____________________________________________________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形, 平面 分别为 的中点.

1)求证: 平面

2)求平面与平面所成锐二面角的大小;

3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,

(1)求该椭圆的标准方程;

(2)(文)若是椭圆上的动点,过P作垂直于x轴的垂线,垂足为M,延长MP至N,使得P恰好为MN中点,求点N的轨迹方程;

若已知点是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出集合

(1)求证:函数

(2)(1)可知,是周期函数且是奇函数,于是张三同学得出两个命题:

命题甲:集合M中的元素都是周期函数;命题乙:集合M中的元素都是奇函数,请对此给出判断,如果正确,请证明;如果不正确,请举出反例;

(3)为常数,的充要条件并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校拟建一块五边形区域的“读书角”,三角形区域ABE为书籍摆放区,沿着ABAE处摆放折线形书架(书架宽度不计),四边形区域为BCDE为阅读区,若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CDm

(1)求两区域边界BE的长度;

(2)若区域ABE为锐角三角形,求书架总长度AB+AE的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点为,其准线与轴交于点.椭圆:分别以为左、右焦点,其离心率,且抛物线和椭圆的一个交点记为.

(1)时,求椭圆的标准方程;

(2)(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.

查看答案和解析>>

同步练习册答案