A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 首先通过平移变换得到函数的解析式:g(x)=$\sqrt{2}$cos(ωx+$\frac{π}{2}$ω),进一步利用函数图象重合,令ωx=2kπ+ωx+$\frac{π}{2}$ω,(k∈Z)即可解得正数ω的最小值.
解答 解:函数f(x)=$\sqrt{2}$cosωx(ω>0)向左平移$\frac{π}{2}$个单位后得到:
g(x)=$\sqrt{2}$cos[ω(x+$\frac{π}{2}$)]=$\sqrt{2}$cos(ωx+$\frac{π}{2}$ω)所得的图象与原图象重合,
令:ωx=2kπ+ωx+$\frac{π}{2}$ω,(k∈Z)
即:ω=-4k,(k∈Z)
当k=-1时,正数ω的最小值为4.
故选:D.
点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换,余弦函数的图象和性质,考查了数形结合思想的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | -4 | C. | -$\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①② | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2\sqrt{S_0}=\sqrt{S_1}+\sqrt{S_2}$ | B. | ${S_0}=\sqrt{{S_1}{S_2}}$ | C. | 2S0=S1+S2 | D. | S02=2S1S2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x+y-3=0或x-2y=0 | B. | x+y-3=0或2x-y=0 | ||
C. | x-y+1=0或x+y-3=0 | D. | x-y+1=0或2x-y=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com