【题目】如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.
(1)证明:平面;
(2)求二面角的平面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)设为的中点,连接,依题意有,,故平面.根据分析有,故平面;(2)以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,利用向量法求得余弦值为.
试题解析:
(1)设为的中点,连接.由题意得:平面,所以.
因为,所以,,故平面.
由分别为的中点,得且,
从而且,所以为平行四边形,故,
又因为平面,所以平面.
(2)方法一:作,且,连结.
由,,得,
由,,得与全等.
由,得,因此为二面角的平面角.
由,,,得,,
由余弦定理得.
方法二:
以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,如图所示,
由题意知各点坐标如下:
,
因此,,,
设平面的法向量为,平面的法向量为,
由,即,可取.
由,即,可取,
于是.
由题意可知,所求二面角的平面角是钝角,故二面角的平面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知向量 =(sin( x+φ),1), =(1,cos( x+φ))(ω>0,0<φ< ),记函数f(x)=( + )( ﹣ ).若函数y=f(x)的周期为4,且经过点M(1, ).
(1)求ω的值;
(2)当﹣1≤x≤1时,求函数f(x)的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0; ②f(0)f(1)<0;
③f(0)f(3)>0; ④f(0)f(3)<0.
其中正确结论的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四边形OABP是平行四边形,过点P的直线与射线OA,OB分别相交于点M,N,若 , .
(1)把y用x表示出来(即求y=f(x)的解析式);
(2)设数列{an}的首项a1=1,前n项和Sn满足Sn=f(Sn﹣1)(n≥2且n∈N*),求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂每日生产一种产品吨,每日生产的产品当日销售完毕,日销售额为万元,产品价格随着产量变化而有所变化,经过一段时间的产销,得到了的一组统计数据如下表:
(1)请判断与中,哪个模型更适合刻画之间的关系?可从函数增长趋势方面给出简单的理由;
(2)根据你的判断及下面的数据和公式,求出关于的回归方程,并估计当日产量时,日销售额是多少?(结果保留整数)
参考公式及数据:线性回归方程中,,.
,
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人各射击一次,击中目标的概率分别是 和 .假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.
(1)求甲射击4次,至少1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com