【题目】设点(a,b)是区域 内的任意一点,则使函数f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数的概率为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥S﹣ABC中,SA=SC,AB⊥AC,D为BC的中点,E为AC上一点,且DE∥平面SAB.求证:
(1)直线AB∥平面SDE;
(2)平面ABC⊥平面SDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+(2a﹣1)x﹣lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线经过点(2,11),求实数a的值;
(2)若函数f(x)在区间(2,3)上单调,求实数a的取值范围;
(3)设 ,若对x1∈(0,+∞),x2∈[0,π],使得f(x1)+g(x2)≥2成立,求整数a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】观察下列各式: C =40;
C +C =41;
C +C +C =42;
C +C +C +C =43;
…
照此规律,当n∈N*时,
C +C +C +…+C = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足2an+1=an+an+2+k(n∈N* , k∈R),且a1=2,a3+a5=﹣4.
(1)若k=0,求数列{an}的前n项和Sn;
(2)若a4=﹣1,求数列{an}的通项公式an .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面2×2列联表,
空间想象能力突出 | 空间想象能力正常 | 合计 | |
男生 |
|
| |
女生 |
| ||
合计 |
|
(2)判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(3)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望. 下面公式及临界值表仅供参考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知n∈N* , Sn=(n+1)(n+2)…(n+n), .
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com