精英家教网 > 高中数学 > 题目详情

【题目】设点(a,b)是区域 内的任意一点,则使函数f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数的概率为( )
A.
B.
C.
D.

【答案】A
【解析】解:作出不等式组对应的平面区域如图

若f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数,

,即

则A(0,4),B(4,0),由

即C( ),

则△OBC的面积S= =

△OAB的面积S= 4=8.

则使函数f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数的概率P= =

所以答案是:A.

【考点精析】解答此题的关键在于理解几何概型的相关知识,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,SA=SC,AB⊥AC,D为BC的中点,E为AC上一点,且DE∥平面SAB.求证:

(1)直线AB∥平面SDE;
(2)平面ABC⊥平面SDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(2a﹣1)x﹣lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线经过点(2,11),求实数a的值;
(2)若函数f(x)在区间(2,3)上单调,求实数a的取值范围;
(3)设 ,若对x1∈(0,+∞),x2∈[0,π],使得f(x1)+g(x2)≥2成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列各式: C =40
C +C =41
C +C +C =42
C +C +C +C =43

照此规律,当n∈N*时,
C +C +C +…+C =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足2an+1=an+an+2+k(n∈N* , k∈R),且a1=2,a3+a5=﹣4.
(1)若k=0,求数列{an}的前n项和Sn
(2)若a4=﹣1,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面2×2列联表,

空间想象能力突出

空间想象能力正常

合计

男生

女生

合计


(2)判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(3)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望. 下面公式及临界值表仅供参考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是Q,点A(8,7),则|PA|+|PQ|的最小值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设U=R,A={x|y=x },B={y|y=﹣x2},则A∩(UB)=( )
A.
B.R
C.{x|x>0}
D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案