精英家教网 > 高中数学 > 题目详情

【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:

单价(千元)

1

1.5

2

2.5

3

销量(百件)

10

8

7

6

已知.

(Ⅰ)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个好数据,现从5个销售数据中任取3个,求其中好数据的个数的分布列和数学期望.

参考公式:.

【答案】(Ⅰ)(Ⅱ)见解析,

【解析】

(Ⅰ)由可求出,求出,再分别计算出,代入公式可求出,由求出,从而得到线性回归方程;

(Ⅱ)利用的值判断共有三个好数据,再计算对应的概率值,列出分布列,计算数学期望即可.

(Ⅰ)由,可得

代入得

∴回归直线方程为.

(Ⅱ)

共有3好数据”.

的分布列为:

1

2

3

的期望值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面 平面 .

(1)证明

(2)设点在线段上,且,若的面积为,求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.×+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+2=2.若图中勾股形的勾股比为,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:

A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)写出的极坐标方程与直线的直角坐标方程;

2)曲线上是否存在不同的两点(以上两点坐标均为极坐标,),使点的距离都为3?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,的中点.现分别沿折起,点折至点,点折至点,使得平面平面,平面平面,连接,如图2.

(Ⅰ)若分别为的中点,求证:平面平面

(Ⅱ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为1113,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.

1)完成列联表,并回答能否有99%的把握认为对线上教育是否满意与性别有关

满意

不满意

总计

男生

女生

合计

120

2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为,求出的分布列及期望值.

参考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当函数内有且只有一个极值点,求实数的取值范围;

2)若函数有两个不同的极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切.

1)求的值.

2)求证:

3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ).

1)若展开式中第5项与第7项的系数之比为38,求k的值;

2)设),且各项系数互不相同.现把这个不同系数随机排成一个三角形数阵:第11个数,第22个数,,第nn个数.设是第i列中的最小数,其中,且i.记的概率为.求证:

查看答案和解析>>

同步练习册答案