【题目】已知向量,,.
()求函数的单增区间.
()若,求值.
()在中,角,,的对边分别是,,.且满足,求函数的取值范围.
【答案】();();().
【解析】试题分析:(1)利用平面向量的数量积得到f(x)的解析式,求解单调区间即可;
(2)由(1)的解析式,利用f(x)=1,结合倍角公式求的值即可;
(3)结合正弦定理结合内角和公式,得到f(A)的解析式,结合三角函数的有界性求值域即可.
试题解析:()
,
∴.
由,得:
,.
的递增区间是.
().
.
∵,
∴,
∴.
()∵.
由正弦定理得.
∴.
∴.
∵.
∴.
∴.
∵.
∴.
∴.
∴,.
又∵.
∴.
故函数的取值范围是.
点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面,,,,,点在棱上,且.
(Ⅰ)求证:;
(Ⅱ)是否存在实数,使得二面角的余弦值为?若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.
(1)求曲线的普通方程和曲线的极坐标方程;
(2)若射线与曲线,分别交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018山西太原市高三3月模拟】已知椭圆的左、右顶点分别为,右焦点为,点在椭圆上.
(I)求椭圆方程;
(II)若直线与椭圆交于两点,已知直线与相交于点,证明:点在定直线上,并求出定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:
数据分组 | |||||||
频数 | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根据频数分布表,求该产品尺寸落在的概率;
(2)求这50件产品尺寸的样本平均数.(同一组中的数据用该组区间的中点值作代表);
(3)根据产品的频数分布,求出产品尺寸中位数的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,表示当天的利润(单位:元),求的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)当时,讨论函数的单调性;
(2)当时,求证:函数有两个不相等的零点, ,且.
【答案】(1)见解析;(2)见解析
【解析】试题分析:(1)讨论函数单调区间即解导数大于零求得增区间,导数小于零求得减区间(2)函数有两个不同的零点,先分析函数单调性得零点所在的区间, 在上单调递增,在上单调递减.∵, , ,∴函数有两个不同的零点,且一个在内,另一个在内.
不妨设, ,要证,即证, 在上是增函数,故,且,即证. 由,得 ,
令 , ,得在上单调递减,∴,且∴, ,∴,即∴,故得证
解析:(1)当时, ,得,
令,得或.
当时, , ,所以,故在上单调递减;
当时, , ,所以,故在上单调递增;
当时, , ,所以,故在上单调递减;
所以在, 上单调递减,在上单调递增.
(2)证明:由题意得,其中,
由得,由得,
所以在上单调递增,在上单调递减.
∵, , ,
∴函数有两个不同的零点,且一个在内,另一个在内.
不妨设, ,
要证,即证,
因为,且在上是增函数,
所以,且,即证.
由,得 ,
令 , ,
则 .
∵,∴, ,
∴时, ,即在上单调递减,
∴,且∴, ,
∴,即∴,故得证.
【题型】解答题
【结束】
22
【题目】已知曲线的参数方程为(为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,设直线的极坐标方程为.
(1)求曲线和直线的普通方程;
(2)设为曲线上任意一点,求点到直线的距离的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
A1 | 上一个年度未发生有责任道路交通事故 | 下浮10% |
A2 | 上两个年度未发生有责任道路交通事故 | 下浮20% |
A3 | 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
A4 | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
A5 | 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
A6 | 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | A1 | A2 | A3 | A4 | A5 | A6 |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.且各种投保类型的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com