精英家教网 > 高中数学 > 题目详情

【题目】某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的,是面积为200平方米的十字形地带.计划在正方MNPQ上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.

(1)设总造价是S元,AD长为x米,试建立S关于x的函数关系式;

(2)当x为何值时,S最小?并求出最小值.

【答案】见解析

【解析】(1)设AM=y,则x2+4xy=200.

∴y=.

∴S=4 200x2+210×4×xy+80×4×y2=4 000x2+4×105×+38 000(x>0).

(2)S=4 000x2+4×105×+38 000≥

2+38 000=118 000,

当且仅当x=时等号成立,

即x=米时,S有最小值118 000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD平面CDE,H是BE的中点,G是AE,DF的交点

(1)求证:GH平面CDE;

(2)求证:面ADEF面ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前三项与数列{bn}的前三项相同,且a12a222a3+…+2n-1an=8n对任意nN*都成立,数列{bn+1-bn}是等差数列

1求数列{an}与{bn}的通项公式;

2是否存在kN*,使得bk-ak0,1?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=,b=,且x∈.

(1)求a·b及|a+b|;

(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3.

(1)求三种粽子各取到1个的概率;

(2)X表示取到的豆沙粽个数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.

(1)证明:a>0;

(2)若z=a+2b,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活经验告诉我们当水注进容器(设单位时间内进水量相同)水的高度随着时间的变化而变化在下图中请选择与容器相匹配的图像A对应________B对应________C对应________D对应________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.

参考数据及公式:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4;坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线

(Ⅰ)求直线的普通方程和曲线的直角坐标方程.

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

同步练习册答案