精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的奇函数,且,若时,有成立.

(Ⅰ)判断上的单调性,并证明;

(Ⅱ)解不等式

(Ⅲ)若对所有的恒成立,求实数的取值范围.

【答案】(1)减函数(2)(3).

【解析】试题分析:

(Ⅰ)根据单调性定义,设,作差,由奇函数的定义化为,再利用已知条件得,从而得函数为减函数;

(Ⅱ)由减函数的定义得,但还要注意定义域,因此有

(Ⅲ)题设不等式恒成立,即恒成立,恒成立,作为的一次不等式,只要时不等式成立即可.

试题解析:

(Ⅰ)上是减函数,

任取,则

为奇函数,

由题知

,即

上单调递减.

(Ⅱ)上单调递减,

解得不等式的解集为.

(Ⅲ)上单调递减,

上,

问题转化为,即,对任意的恒成立,

,即,对任意恒成立,

则由题知,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:

收入x/万元

8.2

8.6

10.0

11.3

11.9

支出y/万元

6.2

7.5

8.0

8.5

9.8

根据上表可得回归直线方程x+,其中=0.76, ,据此估计,该社区一户居民年收入为15万元家庭的年支出为_____万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:

喜欢该项运动

不喜欢该项运动

总计

40

20

60

20

30

50

总计

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

参照附表,以下结论正确是(
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若是奇函数,求的值,并判断的单调性(不用证明);

(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|< )的图象过点B(0,﹣1),且在( )上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1 , x2∈(﹣ ,﹣ ),且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=(
A.﹣
B.﹣1
C.1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形为平行四边形, .

(1)求证: 平面

(2)求到平面的距离;

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】<中华人民共和国个人所得税法>规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:

(1)若某人一月份应缴纳此项税款为280元,那么他当月的工资、薪金所得是多少?

(2)假设某人一个月的工资、薪金所得是元(0<10000),试将其当月应缴纳此项税款元表示成关于的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣cosx,x∈[﹣ ],则满足f(x0)>f( )的x0的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:指数函数f(x)=(m+1)x是减函数;命题q:x∈R,x2+x+m<0,若“p或q”是真命题,则实数m的取值范围是

查看答案和解析>>

同步练习册答案