精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,侧面是菱形,其对角线的交点为,且 .

⑴ 求证: 平面

(2)设,若三棱锥的体积为1,求点到平面的距离.

【答案】(1)见解析(2)

【解析】试题分析

1由四边形是菱形可得,从而可证得平面,所以.又由,可得平面.(2)设菱形的边长为,根据条件可得,根据三棱锥的体积为1可得.进而得到 .设点到平面的距离为,根据等积法,即由可得,即为所求的距离.

试题解析

(1)证明:∵四边形是菱形,

,

,

平面

平面

, 的中点,

平面.

(2)设菱形的边长为

是等边三角形,则

由(1)知,又的中点,

是等边三角形,则

中,

解得.

中,

中,

设点到平面的距离为

解得

即点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线关于直线对称的直线为,直线与椭圆分别交于点,记直线的斜率为.

(Ⅰ)求的值;

(Ⅱ)当变化时,试问直线是否恒过定点? 若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数是奇函数.

(1)判断函数的奇偶性,并求实数的值;

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)设,若存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:

(1) 取出的两球1个是白球,另1个是红球;

(2) 取出的两球至少一个是白球。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任为了对本班学生的月考成绩进行分析,从全班40名同学中随机抽取一个容量为6的样本进行分析.随机抽取6位同学的数学、物理分数对应如表:

学生编号

1

2

3

4

5

6

数学分数x

60

70

80

85

90

95

物理分数y

72

80

88

90

85

95

(1)根据上表数据用散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?

(2)如果具有线性相关性,求出线性回归方程(系数精确到0.1);如果不具有线性相关性,请说明理由.

(3)如果班里的某位同学数学成绩为50,请预测这位同学的物理成绩。

(附)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中, 分别是 的中点, 平面, 是等边三角形, , ,.

(1)证明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,D是BC的中点

(1)求证:平面

2).求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式;

(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.

查看答案和解析>>

同步练习册答案