精英家教网 > 高中数学 > 题目详情
13.设x,y,z为正实数,且x+y+z=3.求证:$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}≥\frac{3}{2}$.

分析 根据题意,由柯西不等式可得(x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$)($\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$)≥(x+y+z)2=9,进而基本不等式分析可得$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤x+y+z=3,进而可得x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤6,将其代入(x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$)($\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$)≥9中,原不等式即可得到证明.

解答 证明:根据题意,x,y,z为正实数,由柯西不等式可得:
(x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$)($\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$)≥(x+y+z)2=9,
即$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$≥$\frac{9}{x+y+z+\sqrt{yz}+\sqrt{zx}+\sqrt{xy}}$,
而x+y+z=3且x+y≥2$\sqrt{xy}$,x+z≥2$\sqrt{xz}$,z+y≥2$\sqrt{zy}$,
分析可得$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤x+y+z=3,
又由x+y+z=3,
则x+y+z+$\sqrt{yz}$+$\sqrt{zx}$+$\sqrt{xy}$≤6,
故$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$≥$\frac{9}{x+y+z+\sqrt{yz}+\sqrt{zx}+\sqrt{xy}}$≥$\frac{9}{6}$=$\frac{3}{2}$;
故可证:$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}$≥$\frac{3}{2}$.

点评 本题主要考查柯西不等式的应用,关键在于对左式的配凑变形,使其满足柯西不等式的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π)
(Ⅰ)求sin(α-$\frac{π}{4}$)的值;
(Ⅱ)求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知函数f(x)=$\frac{x(1-{x}^{2})}{{x}^{2}+1}$,x∈[$\frac{1}{2}$,1],求f(x)的最大值.
(2)已知函数g(x)=$\frac{ax+b}{{x}^{2}+c}$是定义在R上的奇函数,且当x=1时取得极大值1.
①求g(x)的表达式;
②若x1=$\frac{1}{2}$,xn+1=g(xn),n∈N,求证:$\frac{({x}_{2}-{x}_{1})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{3}-{x}_{2})^{2}}{{x}_{3}{x}_{2}}$+…+$\frac{({x}_{n+1}-{x}_{n})^{2}}{{x}_{n}{x}_{n+1}}$≤10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.3π+4B.4π+2C.$\frac{9π}{2}$+4D.$\frac{11π}{2}$+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=ax2+2ax-ln(x+1),其中a∈R.
(1)讨论f(x)的单调性;
(2)若f(x)+e-a>$\frac{1}{x+1}$在区间(0,+∞)内恒成立(e为自然对数的底数),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若$|{\overrightarrow{AB}+\overrightarrow{AC}}|=|{\overrightarrow{AB}-\overrightarrow{AC}}|$,则△ABC的形状是(  )
A.等腰三角形B.直角三角形C.等边三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面上的一组基底,
(1)已知$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三点共线,求实数λ的值;
(2)若$\overrightarrow{e_1},\overrightarrow{e_2}$是夹角为60°的单位向量,$\overrightarrow a=\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow b=-2λ\overrightarrow{e_1}-\overrightarrow{e_2}$,当-3≤λ≤5时,求$\overrightarrow a•\overrightarrow b$的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|(x-2)(x-3a-2)<0},B={x|(x-1)(x-a2-2)<0},若a>0,试问:
(1)当a=1时,求A∩B;
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若命题“?x∈(-1,1],2x>a”是真命题,则a的取值范围是(  )
A.$(-∞,\frac{1}{2}]$B.$(-∞,\frac{1}{2})$C.(-∞,2]D.(-∞,2)

查看答案和解析>>

同步练习册答案