精英家教网 > 高中数学 > 题目详情
本题共有2题,第1小题满分4分,第2小题满分2分
已知集合A={x||x-1|≤1},B={x|x≥a}.
(1)当a=1时,求集合A∩B;
(2)若A⊆B,求实数a的取值范围.
考点:集合的包含关系判断及应用,交集及其运算
专题:计算题,集合
分析:首先化简集合A,
(1)由题意求集合B,从而求A∩B;
(2)由A⊆B求实数a的取值范围.
解答: 解:由题意,
A={x||x-1|≤1}=[0,2],
(1)B={x|x≥1},
故A∩B=[1,2].
(2)∵A⊆B,
∴a≤0.
点评:本题考查了集合的化简与运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1-
1
2
sin(2x+
π
3
)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率存在且过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N,则
AM
AN
等于(  )
A、-6B、-5C、-4D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,动点P、Q分别在线段C1D、AC上,则线段PQ长度的最小值时(  )
A、
2
3
B、
3
3
C、
2
3
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+1
在(-∞,1)上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠C=90°,D是AB的中点.用向量法证明CD=
1
2
AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn满足Sn=2an-n.
(1)求证:数列{an+1}为等比数列;
(2)记bn=log2(an+1),求数列{
1
bnbn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过A(1,
3
)、B(
2
,-
2
),且圆心在直线y=x上.
(1)求圆C的方程;
(2)设直线l的方程为(t3+2t)x+(t3+t+1)y-(t3+2t)=0,
①证明:对任意实数t,直线l过定点P;
②过动点M作圆C的两条切线,切点分别为A和B,且有
MA
MB
=0,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log
1
2
(x-1)
的定义域为集合A,函数g(x)=3 m-2x-x2-1的值域为集合B,且 A∪B=B,实数m的取值范围是多少.

查看答案和解析>>

同步练习册答案