精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{1}{2}$sin$\frac{1}{2}$x的最小正周期是4π.

分析 根据三角函数的周期定义即可求出.

解答 解:f(x)=$\frac{1}{2}$sin$\frac{1}{2}$x,
∴T=$\frac{2π}{ω}$=$\frac{2π}{\frac{1}{2}}$=4π,
∴函数f(x)=$\frac{1}{2}$sin$\frac{1}{2}$x的最小正周期是4π,
故答案为:4π.

点评 本题考查了三角形函数的最小正周期,关键掌握周期的公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知点P为△ABC所在平面内一点,|$\overrightarrow{CA}$|=|$\overrightarrow{CB}$|=1且$\overrightarrow{CP}$=$\overrightarrow{CA}$+$\overrightarrow{CB}$,则点P在(  )
A.△ABC内心上B.直线AB上C.△ABC垂心上D.∠ACB的平分线上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线y2=2x与过点M(m,0)(m>0)的直线交于A(x1,y1),B(x2,y2)两点.若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F,椭圆上两点A,B关于原点对称,M,N分别是线段AF,BF的中点,且以MN为直径的圆过原点,直线AB的斜率k满足0<k<$\frac{\sqrt{3}}{3}$,则椭圆的离心率e的取值范围是(  )
A.(0,$\frac{\sqrt{6}}{3}$)B.($\frac{\sqrt{6}}{3}$,1)C.(0,$\sqrt{3}$-1)D.($\sqrt{3}$-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过圆x2+y2=5上一点(-1,2)的圆的切线方程是x-2y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a+b+c=0,求证:a3+a2c+b2c-abc+b3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD.异面直线PB与CD所成的角为45°.求:
(1)二面角B-PC-D的大小;
(2)直线PB与平面PCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,几何体ABCDEF中,四边形ABEF为矩形,ABCD为梯形,平面ABEF⊥平面ABCD,AB∥CD,AB=4,AF=AD=CD=2,AD⊥BD,O为AB的中点.
(1)证明:AD⊥平面BDE;
(2)在线段DE上是否存在点N,使得ON∥平面ADF?说明理由;
(3)求点C到平面BDF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱锥P-ABC中,BC⊥平面PAB.PA=PB=AB=BC=6,点M,N分别为PB,BC的中点.
(Ⅰ)求证:AM⊥平面PBC;
(Ⅱ)E在线段AC上的点,且AM∥平面PNE.
①确定点E的位置;
②求直线PE与平面PAB所成角的正切值.

查看答案和解析>>

同步练习册答案