精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=loga +x)(其中a>1).
(1)判断函数y=f(x)的奇偶性,并说明理由;
(2)判断 (其中m,n∈R,且m+n≠0)的正负,并说明理由.

【答案】
(1)解:函数y=f(x)是奇函数,理由如下:

因为 ,所以函数y=f(x)的定义域为R.

又因为

所以函数y=f(x)是奇函数


(2)解: ,理由如下:

任取0≤x1<x2,设

,故0<u1<u2,从而

因为a>1,所以

在[0,+∞)上单调递增.

又因为 为奇函数,

所以f(﹣n)=﹣f(n),且 在(﹣∞,+∞)上单调递增.

所以m+n=m﹣(﹣n)与f(m)+f(n)=f(m)﹣f(﹣n)同号,即


【解析】(1)函数y=f(x)是奇函数,理由如下:结合对数的运算性质和函数奇偶性的定义,可证明;(2) ,结合函数的单调性和奇偶性,可进行判断.
【考点精析】利用函数的奇偶性对题目进行判断即可得到答案,需要熟知偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入)
问:
(1)把y表示为x的函数,并求其定义域;
(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义max{{x,y}= ,设f(x)=max{ax﹣a,﹣logax}(x∈R+ , a>0,a≠1).若a= ,则f(2)+f( )=;若a>1,则不等式f(x)≥2的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数在点处的切线方程;

(2)对任意的函数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线的准线为,取过焦点且平行于轴的直线与抛物线交于不同的两点,过作圆心为的圆,使抛物线上其余点均在圆外,且. 

(Ⅰ)求抛物线和圆的方程;

(Ⅱ)过点作直线与抛物线和圆依次交于,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:

P(k2>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.83

x

2

4

5

6

8

y

30

40

60

50

70

(Ⅰ)画出散点图;
(Ⅱ)求回归直线方程;
(Ⅲ)试预测广告费支出为10万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x﹣2x
(1)判断函数f(x)的奇偶性;
(2)证明:函数f(x)为(﹣∞,+∞)上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4—4;坐标系与参数方程)已知曲线的极坐标方程是,曲线经过平移变换得到曲线;以极点为原点,极轴为轴正方向建立平面直角坐标系,直线l的参数方程是 (为参数).

(1)求曲线 的直角坐标方程;

(2)设直线l与曲线交于两点,点的直角坐标为(2,1),若,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,成都市B档出租车的计价标准是:路程2km以内(含2km)按起步价8元收取,超过2km后的路程按1.9元/km收取,但超过10km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元/km).(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)
(1)将乘客搭乘一次B档出租车的费用f(x)(元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客行程为16km,他准备先乘一辆B档出租车行驶8km,然后再换乘另一辆B档出租车完成余下行程,请问:他这样做是否比只乘一辆B档出租车完成全部行程更省钱?

查看答案和解析>>

同步练习册答案