精英家教网 > 高中数学 > 题目详情

【题目】( 本小题满分14)

如图,在三棱锥PABC中,PC底面ABCABBCDE分别是ABPB的中点.

(1)求证:DE平面PAC

(2)求证:ABPB

【答案】(1)见解析;(2)见解析.

【解析】(1)证:DEPA即可。

(2)PC平面ABC,所以ABPC,因为ABBC,所以AB平面PBC.所以ABPB。

(1)证明:因为DE分别是ABPB的中点,

所以DEPA

因为PA平面PAC,且DE平面PAC

所以DE平面PAC

…………………7分

(2)因为PC平面ABC,且AB平面ABC

所以ABPC.又因为ABBC,且PCBCC

所以AB平面PBC

又因为PB平面PBC

所以ABPB…………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2﹣2|x|

1)将函数fx)写成分段函数;

2)判断函数的奇偶性,并画出函数图象.

3)若函数在[a, +∞)上单调,求a的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为 的等比数列 是递减数列,且 成等差数列;数列 的前 项和为 ,且
(Ⅰ)求数列 的通项公式;
(Ⅱ)已知 ,求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为R
(1)当a=2时,求函数f(x)的值域
(2)若函数f(x)是奇函数,①求a的值;②解不等式f(3﹣m)+f(3﹣m2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在(1+x+x2n= x x2+… xr+… x2n1 x2n的展开式中,把D ,D ,D …,D …,D 叫做三项式系数
(1)求D 的值
(2)根据二项式定理,将等式(1+x)2n=(1+x)n(x+1)n的两边分别展开可得,左右两边xn的系数相等,即C =(C 2+(C 2+(C 2+…+(C 2 , 利用上述思想方法,请计算D C ﹣D C +D C ﹣…+(﹣1)rD C +.. C C 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数,且.

(1)求的值;

(2)求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图动点P从单位正方形ABCD顶点A开始顺次经B、C、D绕边界一周,当 表示点P的行程, 表示PA之长时,求y关于x的解析式,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图11所示,三棱台中, 分别为的中点.

(1)求证: 平面

(2)若 ,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 判断函数的单调性并给出证明;

(2)若存在实数使函数是奇函数,求

(3)对于(2)中的,若,当时恒成立,求的最大值.

查看答案和解析>>

同步练习册答案