精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 的焦点为 ,过点 分别作两条直线 ,直线 与抛物线 交于 两点,直线 与抛物线 交于 两点,若 的斜率的平方和为1,则 的最小值为( )
A.16
B.20
C.24
D.32

【答案】C
【解析】易知直线 的斜率存在,且不为零,设 ,直线 的方程为 ,联立方程 ,得 ,同理直线 与抛物线的交点满足 ,由抛物线定义可知 ,又 (当且仅当 时取等号), 的最小值为
故答案为:C.过焦点的弦叫焦点弦,由两个焦半径组成,焦点弦长为两端点横坐标和加上焦参数p,由两条斜率平方和为定值1的两条焦点弦长之和表示为斜率的表达式,结合均值不等式求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,离心率为 ,经过点 且倾斜角为 的直线 交椭圆于 两点.

(1)若 的周长为16,求直线 的方程;
(2)若 ,求椭圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|+|x+1|.
(1)解关于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形 中, 分别为 的中点,现将 沿 折起,得四棱锥

(1)求证: 平面
(2)若平面 平面 ,求四面体 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为自然对数的底数.
(1)若函数 在区间 上是单调函数,试求实数 的取值范围;
(2)已知函数 ,且 ,若函数 在区间 上恰有3个零点,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3ax2+bx-5a+b是偶函数,且其定义域为[6a-1,a],则a+b=( )
A.
B.-1
C.1
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,曲线 的参数方程为 为参数),在以 为极点, 轴的正半轴为极轴的极坐标系中,曲线 是圆心为 ,半径为1的圆.
(1)求曲线 的直角坐标方程;
(2)设 为曲线 上的点, 为曲线 上的点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式4ax-1<3x-4(a>0,且a≠1)对于任意的x>2恒成立,则a的取值范围为( )
A.
B.
C.[2,+∞)
D.(2,+∞)

查看答案和解析>>

同步练习册答案