【题目】如图,长方体ABCD—A1B1C1D1中,试在DD1确定一点P,使得直线BD1∥平面PAC,并证明你的结论.
科目:高中数学 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).
(1)当甲城市投资50万元时,求此时公司总收益;
(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有两个参加国际中学生交流活动的代表名额,为此该学校高中部推荐2男1女三名候选人,初中部也推荐了1男2女三名候选人。若从6名学生中人选2人做代表。
求:(1)选出的2名同学来自不同年相级部且性别同的概率;
(2)选出的2名同学都来自高中部或都来自初中部的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2﹣4ρcosθ+1=0,直线l: (t为参数,0≤α<π).
(1)求曲线C的参数方程;
(2)若直线l与曲线C相切,求直线l的倾斜角及切点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知从椭圆的一个焦点看两短轴端点所成视角为,且椭圆经过.
(1)求椭圆的方程;
(2)是否存在实数,使直线与椭圆有两个不同交点,且(为坐标原点),若存在,求出的值.不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.
(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值为 ,求斜三棱柱ABC﹣A1B1C1的侧棱AA1的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项(a是常数),().
(1)求,,,并判断是否存在实数a使成等差数列.若存在,求出的通项公式;若不存在,说明理由;
(2)设,(),为数列的前n项和,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在钝角△ABC中,∠A为钝角,令,若.现给出下面结论:
①当时,点D是△ABC的重心;
②记△ABD,△ACD的面积分别为,,当时,;
③若点D在△ABC内部(不含边界),则的取值范围是;
④若点D在线段BC上(不在端点),则
⑤若,其中点E在直线BC上,则当时,.
其中正确的有(写出所有正确结论的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com