精英家教网 > 高中数学 > 题目详情

棱长为2的正方体A1B1C1D1-ABCD中,E、F分别是C1C和D1A1的中点,

(1)求异面直线所成的角的余弦值;

(2)求点A到EF的距离.

(1)异面直线所成的角的余弦值为;(2)A到EF的距离为


解析:

(1)如图,以D为原点,DA、DC、DD1分别为x轴、

y轴、z轴建立空间直角坐标系,则由已知得

A(2,0,0),B(2,2,0),E(0,2,1),F(1,0,2);

=(0,2,0),=(1,,1),=(1,0,),

∴ ||=2,||==

= , =

夹角的余弦值为cos==

∵异面直线所成角的范围是,向量的夹角范围是

∴异面直线所成的角的余弦值为

(2)由(1)得=,||=

方向上的射影为=

∴A到EF的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•杨浦区二模)在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.
(1)求三棱锥A1-D1EF的体积;
(2)求EF与底面A1B1C1D1所成的角的大小.(结果可用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(文)如图,在棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别是棱AB、AD的中点.求:
(1)异面直线BC1与EF所成角的大小;
(2)三棱锥A1-EFC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(文)如图,在棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别是棱AB、AD的中点.求:
(1)异面直线BC1与EF所成角的大小;
(2)三棱锥A1-EFC的体积V.

查看答案和解析>>

科目:高中数学 来源:2008年上海市杨浦区高考数学二模试卷(文科)(解析版) 题型:解答题

在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.
(1)求三棱锥A1-D1EF的体积;
(2)求EF与底面A1B1C1D1所成的角的大小.(结果可用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源:2008年上海市杨浦区高考数学二模试卷(理科)(解析版) 题型:解答题

在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.
(1)求三棱锥A1-D1EF的体积;
(2)求EF与底面A1B1C1D1所成的角的大小.(结果可用反三角函数表示)

查看答案和解析>>

同步练习册答案