精英家教网 > 高中数学 > 题目详情
5.设i为虚数单位,复数$\frac{a+2i}{1+i}$为纯虚数,则实数a的值为(  )
A.-1B.1C.-2D.2

分析 利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解.

解答 解:∵$\frac{a+2i}{1+i}$=$\frac{(a+2i)(1-i)}{(1+i)(1-i)}=\frac{a+2+(2-a)i}{2}$为纯虚数,
∴$\left\{\begin{array}{l}{a+2=0}\\{2-a≠0}\end{array}\right.$,解得a=-2.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切的圆的圆心在(  )
A.一个圆上B.一个椭圆上C.双曲线的一支上D.一条抛物线上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且对任意正整数n都有an2=S2n-1
(1)求数列{an}的通项公式;
(2)若数列$\{\frac{b_n}{{{a_{n-1}}}}\}$是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起如图乙所示的四棱锥P-OBCD,使得PC=$\sqrt{3}$,点E是线段PB上一动点.

(1)证明:DE和PC不可能垂直;
(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设定义在(0,+∞)的函数f(x)的导函数是f'(x),且x4f'(x)+3x3f(x)=ex,$f(3)=\frac{e^3}{81}$,则x>0时,f(x)(  )
A.有极大值,无极小值B.有极小值,无极大值
C.既无极大值,又无极小值D.既有极大值,又有极小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在圆内接四边形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ,则四边形ABCD周长的取值范围为(3+$\sqrt{7}$,3+2$\sqrt{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{1}{3}{x^3}-{x^2}$-3x+9的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线y=2x2-x在点(1,1)处的切线方程为(  )
A.x-y+2=0B.3x-y+2=0C.x-3y-2=0D.3x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.$2{log_5}10+{log_5}\frac{1}{4}+{2^{{{log}_4}3}}$=2+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案