【题目】已知椭圆的离心率为,点在椭圆C上.
(1)求椭圆C的标准方程;
(2)若直线上与C交于A,B两点,是否存在l,使得点在以AB为直径的圆外.若存在,求出k的取值范围;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在边长为的等边三角形中,点分别是边上的点,满足且,将沿直线折到的位置. 在翻折过程中,下列结论成立的是( )
A.在边上存在点,使得在翻折过程中,满足平面
B.存在,使得在翻折过程中的某个位置,满足平面平面
C.若,当二面角为直二面角时,
D.在翻折过程中,四棱锥体积的最大值记为,的最大值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,点A为该椭圆的左顶点,过右焦点的直线l与椭圆交于B,C两点,当轴时,三角形ABC的面积为18.
求椭圆的方程;
如图,当动直线BC斜率存在且不为0时,直线分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得,若存在求出点P的坐标;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图中、、、、、六个区域进行染色,每个区域只染一种颜色,每个区域只染一种颜色,且相邻的区域不同色.若有种颜色可供选择,则共有_________种不同的染色方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)求实数的值,使得为奇函数;
(2)若关于的方程有两个不同实数解,求的取值范围;
(3)若关于的不等式对任意恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某保险公司的某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | |
保费(元) |
随机调查了该险种的400名续保人在一年内的出险情况,得到下表:
出险次数 | 0 | 1 | 2 | 3 | |
频数 | 280 | 80 | 24 | 12 | 4 |
该保险公司这种保险的赔付规定如下:
出险序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
赔付金额(元) | 0 |
将所抽样本的频率视为概率.
(Ⅰ)求本年度续保人保费的平均值的估计值;
(Ⅱ)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付元;若续保人在本年度内出险6次,则可获得赔付元;依此类推,求本年度续保人所获赔付金额的平均值的估计值;
(Ⅲ)续保人原定约了保险公司的销售人员在上午10:30~11:30之间上门签合同,因为续保人临时有事,外出的时间在上午10:45~11:05之间,请问续保人在离开前见到销售人员的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程(为参数).直线的参数方程(为参数).
(Ⅰ)求曲线在直角坐标系中的普通方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点, .
(1)当长为1分米时,求折卷成的包装盒的容积;
(2)当的长是多少分米时,折卷成的包装盒的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是圆的直径,点是圆上异于,的点,直线平面,,分别是,的中点.
(Ⅰ)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;
(Ⅱ)设,求二面角大小的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com