【题目】已知正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值 .
【答案】
【解析】解:取AB的中点F,连接B1F,过点F作FG⊥BD,垂足为G,连接B1G,
由正方体性质易知BB1⊥平面ABCD,又FG平面ABCD,
∴BB1⊥FG
又FG⊥BD,BD∩BB1=B,BD平面BDD1B1 , BB1平面BDD1B1
∴FG⊥平面BDD1B1
∴∠FB1G为B1F与平面平面BDD1B1所成角
设正方体ABCD﹣A1B1C1D1棱长为1,
∴FG= ,B1F=
∴sin∠B1FO=
而AE∥B1F,所以直线AE与平面BDD1B1所成角的正弦值为
所以答案是:
【考点精析】本题主要考查了空间角的异面直线所成的角的相关知识点,需要掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】动点在抛物线上,过点作垂直于轴,垂足为,设.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)若点是上的动点,过点作抛物线:的两条切线,切点分别为,设点到直线的距离为,求的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 C: 的焦距为2,且过点,右焦点为.设A,B 是C上的两个动点,线段 AB 的中点M 的横坐标为,线段AB的中垂线交椭圆C于P,Q 两点.
(1)求椭圆 C 的方程;
(2)设M点纵坐标为m,求直线PQ的方程,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在轴上的椭圆过点,且离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线(,)与椭圆C交于两点A、B,点D满足,经过点D及点的直线的斜率为,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图是函数y=Asin(ωx+φ)(x∈R)在区间 上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点( )
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=.
(Ⅰ)求证:DE⊥AC;
(Ⅱ)求DE与平面BEC所成角的正弦值;
(Ⅲ)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 袋中有形状、大小、质地完全一样的个红球和个白球,从中随机抽出一个球,一定是红球
B. 天气预报“明天降水概率”,是指明天有的时间会下雨
C. 某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票张,一定会中奖
D. 连续掷一枚均匀硬币,若次都是正面朝上,则第六次仍然可能正面朝上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某山区养殖场散养的3500头猪中随机抽取5头,测量猪的体长x(cm)和体重y(kg),得如下测量数据:
猪编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 181 | 166 | 185 | 180 |
y | 95 | 100 | 97 | 103 | 101 |
(1)当且仅当x,y满足:x≥180且y≥100时,该猪为优等品,用上述样本数据估计山区养殖场散养的3500头猪中优等品的数量;
(2)从抽取的上述5头猪中,随机抽取2头中优等品数x的分布列及其数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com