精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,如果满足;对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.已知函数.

)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

)若上的有界函数,且的上界为3,求实数的取值范围;

)若,求函数上的上界的取值范围.

【答案】(Ⅰ)(3+∞),不是有界函数.(Ⅱ)﹣5≤a≤1;(Ⅲ)当时,T的取值范围是;当时,T的取值范围是[

【解析】

(Ⅰ)当a1时,易知fx)在(0+∞)上递增,有fx)>f0)=3,再由给出的定义判断;

(Ⅱ)根据函数fx)在(﹣0]上是以3为上界的函数,得到|1+2x+4x|≤3,换元以后得到关于t的不等式,根据二次函数的性质写出对称轴,求出a的范围.

(Ⅲ)据题意先研究函数gx)在[01]上的单调性,确定函数gx)的范围,即分别求的最大值和最小值,根据上界的定义,T不小于最大值,从而解决..

(Ⅰ)当a1时,

因为fx)在(0+∞)上递增,所以fx)>f0)=3

fx)在(0+∞)的值域为(3+∞)故不存在常数M0,使|fx|≤M成立

所以函数fx)在(﹣0)上不是有界函数.

(Ⅱ)由已知函数fx)在(﹣0]上是以3为上界的函数,即:|1+a2x+4x|≤3

t2x,所以t∈(01),不等式化为|1+at+t2|≤3

0时,12+a≤3得﹣2≤a0

a2a≥0时,得﹣5≤a20≤a≤1

综上有﹣5≤a≤1

(Ⅲ)

m0x[01]

gx)在[01]上递减,

g1gxg0)即

①当,即时,

此时

②当,即时,

此时

综上所述,当时,T的取值范围是

时,T的取值范围是[

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求曲线经过原点的切线方程;

(Ⅱ)若在时,有恒成立,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在四面体中,分别是棱的中点.

)求证:平面

)求证:四边形为矩形;

)是否存在点,到四面体六条棱的中点 的距离相等?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水域受到污染,水务部门决定往水中投放一种药剂来净化水质,已知每次投放质量为的药剂后,经过)天,该药剂在水中释放的浓度(毫克升)为,其中,当药剂在水中释放浓度不低于(毫克升)时称为有效净化,当药剂在水中释放的浓度不低于(毫克升)且不高于(毫克升)时称为最佳净化.

1)如果投放的药剂质量为,那么该水域达到有效净化一共可持续几天?

2)如果投放的药剂质量为,为了使该水域天(从投放药剂算起,包括第天)之内都达到最佳净化,确定应该投放的药剂质量的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位长度后,再将所得的图象向下平移一个单位长度得到函数的图象,且的图象与直线相邻两个交点的距离为,若对任意恒成立,则的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到g(x)=Acosωx的图象,只需把y=f(x)的图象上所有的点(  )

A. 向右平移个单位长度 B. 向左平移个单位长度

C. 向右平移个单位长度 D. 向左平移个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足,其中;

:实数满足.

Ⅰ)若,为真,求实数的取值范围;

Ⅱ)若的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.

(1)试求椭圆的标准方程;

(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则之积是否为定值?若是,求出该定值;若不是,试说明理由.

查看答案和解析>>

同步练习册答案