【题目】设n∈N*且n≥2,集合
(1)写出集合中的所有元素;
(2)设(,···,
),(
,···,
)∈
,证明“
=
”的充要条件是
=
(i=1,2,3,···,n);
(3)设集合={
︳(
,···,
)∈
},求
中所有正数之和.
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是边长为
的菱形,对角线
与
相交于点
,
,
平面
,平面
与平面
所成的角为45°,
是
的中点.
(1)证明:平面平面
;
(2)求异面直线与
所成角的余弦值;
(3)求直线与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用细钢管焊接而成的花坛围栏构件如图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁,抛物线的顶点与梯形上底中点是焊接点O,梯形的腰紧靠在抛物线上,两条腰的中点是梯形的腰、抛物线以及横梁的焊接点A,B,抛物线与梯形下底的两个焊接点为C,D,已知梯形的高是40厘米,C,D两点间的距离为40厘米.
(1)求横梁AB的长度;
(2)求梯形外框的用料长度;
(注:细钢管的粗细等因素忽略不计,结果精确到1厘米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项
,对任意的
,都有
,数列
是公比不为
的等比数列.
(1)求实数的值;
(2)设数列
的前
项和为
,求所有正整数
的值,使得
恰好为数列
中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在△中,
,
分别为
,
的中点,
为
的中点,
,
.将△
沿
折起到△
的位置,使得平面
平面
,
为
的中点,如图2.
(1)求证: 平面
;
(2)求证:平面平面
;
(3)线段上是否存在点
,使得
平面
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新中国昂首阔步地走进2019年,迎来了她70岁华诞.某平台组织了“伟大的复兴之路一新中国70周年知识问答”活动,规则如下:共有30道单选题,每题4个选项中只有一个正确,每答对一题获得5颗红星,每答错一题反扣2颗红星;若放弃此题,则红星数无变化.答题所获得的红星可用来兑换神秘礼品,红星数越多奖品等级越高.小强参加该活动,其中有些题目会做,有些题目可以排除若干错误选项,其余的题目则完全不会.
(1)请问:对于完全不会的题目,小强应该随机从4个选项中选一个作答,还是选择放弃?(利用统计知识说明理由)
(2)若小强有12道题目会做,剩下的题目中,可以排除一个错误选项、可以排除两个错误选项和完全不会的题目的数量比是.请问:小强在本次活动中可以获得最多红星数的期望是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中
,
,
,
,且
的最小值为
,
的图象的相邻两条对称轴之间的距离为
,
的图象关于原点对称.
(1)求函数的解析式和单调递增区间;
(2)在中,角
所对的边分别为
,且
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com