精英家教网 > 高中数学 > 题目详情
17.给出下列四个语句:①两条异面直线有公共点;②你是武威二中的学生吗?③x∈{1,2,3,4};④方向相反的两个向量是共线向量.其中是命题的语句共有(  )
A.4个B.3个C.2个D.1个

分析 能够判断真假的句子是命题,疑问句,感叹句,祈使句均不是命题,进而可得答案.

解答 解:①两条异面直线有公共点,是命题;
②你是武威二中的学生吗?是疑问句,不是命题;
③x∈{1,2,3,4},不能判断真假,不是命题;
④方向相反的两个向量是共线向量,是命题.
故是命题的共有2个,
故选:C

点评 本题考查的知识点是命题的概念,熟练掌握命题的概念,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.计算下列各式的值:
(1)$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4-sin270°+tan15°
(2)log3$\sqrt{27}$+lg25+2lg2+7${\;}^{3lo{g}_{7}2}$+$\frac{lg4+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.cos(-570°)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=2x3+3ax2+3bx+8在x=1及x=2时取得极值.
(1)求a,b的值;
(2)求曲线f(x)在x=0处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.向量$\overrightarrow{a}$=(1,2,-2),$\overrightarrow{b}$=(-2,-4,4),则$\overrightarrow{a}$与$\overrightarrow{b}$(  )
A.相交B.垂直C.平行D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.
(1)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,b=$\sqrt{3}$,求a+c的值;
(2)求2sinA-sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个命题:
①样本相关系数r越大,线性相关关系越强;
②回归直线就是散点图中经过样本数据点最多的那条直线;
③设m,n是不同的直线,α,β是不同的平面,若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β;
④若直线m不垂直于平面α,则直线m不可能垂直于平面α内的无数条直线.
其中正确命题的序号为(  )
A.、①②③B.①③C.①②④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线y=ax2+bx+c(a>0)过(-2,0),(2,3)两点,那么抛物线的对称轴(  )
A.只能是x=-1
B.可能是y轴
C.可能在y轴右侧且在直线x=2的左侧
D.可能在y轴左侧且在直线x=-2的右侧

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,且$\overrightarrow{a}$,$\overrightarrow{b}$不共线,求当k为何值时,向量$\overrightarrow{a}$+k$\overrightarrow{b}$与$\overrightarrow{a}$-k$\overrightarrow{b}$互相垂直?
(2)已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{1}{2}$,求$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$夹角的余弦值.

查看答案和解析>>

同步练习册答案