精英家教网 > 高中数学 > 题目详情

【题目】已知是函数的极值点.

(Ⅰ)求实数的值;

(Ⅱ)求证:函数存在唯一的极小值点,且.

(参考数据:

【答案】(Ⅰ) (Ⅱ)见证明

【解析】

(Ⅰ)根据求得;通过导数验证函数的单调性,可知时极值点为,满足题意;(Ⅱ)根据(Ⅰ)可知极小值点位于,此时的零点,且此时为极小值点,代入得到关于的二次函数,求解二次函数值域即可证得结论.

(Ⅰ)因为,且是极值点

所以,所以

此时

,则

则当时,为减函数

时,,则为增函数

时,,则为减函数

此时的极大值点,符合题意

(Ⅱ)由(Ⅰ)知,时,不存在极小值点

时,为增函数,且

所以存在

结合(Ⅰ)可知当时,为减函数; 时,为增函数,所以函数存在唯一的极小值点

,所以

且满足 .

所以

由二次函数图象可知:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】表示中的最大值.已知函数

(1)设求函数上零点的个数

(2)试探讨是否存在实数使得恒成立若存在的取值范围若不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,且下列三个关系:中有且只有一个正确,则函数的值域是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.

某读书APP抽样调查了非一线城市M和一线城市N100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为活跃用户

1)请填写以下列联表,并判断是否有995%的把握认为用户活跃与否与所在城市有关?

活跃用户

不活跃用户

合计

城市M

城市N

合计

2)以频率估计概率,从城市M中任选2名用户,从城市N中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.

3)该读书APP还统计了20184个季度的用户使用时长y(单位:百万小时),发现y与季度()线性相关,得到回归直线为,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度()该读书APP用户使用时长约为多少百万小时.

附:,其中

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上动点与定点的距离和它到定直线的距离的比是常数.若过的动直线与曲线相交于两点.

(1)判断曲线的名称并写出它的标准方程;

(2)是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB为圆O的直径,且,点D为线段AO的中点,点C为圆O上的一点,且平面ABC.

1)求证:平面PAB.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,点,动点满足,点为线段的中点,抛物线上点的纵坐标为.

(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;

(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若上为单调递增,求实数的取值范围;

(2)若,且,求证:对定义域内的任意实数,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数在区间(其中是自然对数的底数)上的最小值;

(2)若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

同步练习册答案