精英家教网 > 高中数学 > 题目详情
13.双曲线C:$\frac{x^2}{16}-\frac{y^2}{4}=1$的渐近线方程为$y=±\frac{1}{2}x$;设F1,F2为双曲线C的左、右焦点,P为C上一点,且|PF1|=4,则|PF2|=12.

分析 双曲线C:$\frac{x^2}{16}-\frac{y^2}{4}=1$中a=4,b=2,可得渐近线方程为$y=±\frac{1}{2}x$,由题意P在双曲线的左支上,则|PF2|-|PF1|=2a=8,即可得出结论.

解答 解:双曲线C:$\frac{x^2}{16}-\frac{y^2}{4}=1$中a=4,b=2,则渐近线方程为$y=±\frac{1}{2}x$,
由题意P在双曲线的左支上,则|PF2|-|PF1|=2a=8,
∴|PF2|=12
故答案为:$y=±\frac{1}{2}x$,12.

点评 本题考查双曲线的方程与性质,考查双曲线的定义,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.甲、乙、丙三支球队进行某种比赛,其中两队比赛,另一队当裁判,每局比赛结束时,负方在下一局当裁判.设各局比赛双方获胜的概率均为$\frac{1}{2}$,各局比赛结果相互独立,且没有平局,根据抽签结果第一局甲队当裁判
(Ⅰ)求第四局甲队当裁判的概率;
(Ⅱ)用X表示前四局中乙队当裁判的次数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线的中心是原点,焦点到渐近线的距离为2,一条准线方程为y=-3,则其渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a∈R,函数f(x)=x|x-a|.
(Ⅰ)当a=2时,将函数f(x)写成分段函数的形式,并作出函数的简图,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直角坐标系xOy中,已知圆O:x2+y2=4.点B,C在圆O上,且关于x轴对称.
(Ⅰ)当点B的横坐标为$\sqrt{3}$时,求$\overrightarrow{OB}•\overrightarrow{OC}$的值;
(Ⅱ)设P为圆O上异于B,C的任意一点,直线PB,PC与x轴分别交于点M,N,证明:|OM|•|ON|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某食品的保鲜时间t(单位:小时)与储藏温度x(恒温,单位:℃)满足函数关系$t=\left\{\begin{array}{l}64,x≤0\\{2^{kx+6}},x>0.\end{array}\right.$且该食品在4℃的保鲜时间是16小时.
①该食品在8℃的保鲜时间是4小时;
②已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了此日13时,甲所购买的食品是否过了保鲜时间是.(填“是”或“否”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左,右支于另一点,M,N.若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{-|x^3-2x^2+x|,x<1}\\{lnx,x≥1}\end{array}\right.$,若对于?t∈R,f(t)≤kt恒成立,则实数k的取值范围是[$\frac{1}{e}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=sin($\frac{1}{2}$x+θ)是偶函数,则θ的一个值是(  )
A.B.-$\frac{π}{2}$C.-$\frac{π}{4}$D.-$\frac{π}{8}$

查看答案和解析>>

同步练习册答案