精英家教网 > 高中数学 > 题目详情
设函数f(x)=ex+2x-a(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是(  )
A、[1,e]
B、[1,1+e]
C、[e,1+e]
D、[0,1]
考点:指数函数的图像与性质
专题:函数的性质及应用
分析:利用反函数将问题进行转化,再将解方程问题转化为函数的图象交点问题.
解答:解:由f(f(b))=b,可得f(b)=f-1(b)
其中f-1(x)是函数f(x)的反函数
因此命题“存在b∈[0,1]使f(f(b))=b成立”,转化为
“存在b∈[0,1],使f(b)=f-1(b)”,
即y=f(x)的图象与函数y=f-1(x)的图象有交点,
且交点的横坐标b∈[0,1],
∵y=f(x)的图象与y=f-1(x)的图象关于直线y=x对称,
∴y=f(x)的图象与函数y=f-1(x)的图象的交点必定在直线y=x上,
由此可得,y=f(x)的图象与直线y=x有交点,且交点横坐标b∈[0,1],
∴ex+2x-a=x
∴a=ex+x
设g(x)=ex+x
则g′(x)=ex+1>0在[0,1]上恒成立,
∴g(x)=ex+x在[0,1]上递增,
∴g(0)=1+0=1,g(1)=e+1
∴a的取值范围是[1,1+e],
故选:B
点评:本题主要考察了复合函数的性质,综合性较强,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(3x)=log2
9x+1
2
,则f(1)的值为(  )
A、1
B、2
C、-1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式|x-3|+|x-4|<a的解集是空集,则实数a的取值范围是(  )
A、(-∞,1]
B、(-∞,1)
C、[1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数f(x)=
lg(x2-2x)
9-x2
的定义域.
(2)已知函数f(x)的定义域为[0,1],求函数f(x2)的定义域
(3)已知函数f[lg(x+1)]的定义域是[0,9],求函数f(2x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是偶函数,当x≥0时,f(x)=2x-4,则{x|f(x-2)>0}等于(  )
A、{x|x<-2或x>2}
B、{x|x<-2或x>4}
C、{x|x<0或x>6}
D、{x|x<0或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R函数y=f(x),存在常数a>0,对任意x∈R,均有f(x)<f(x+a)成立,则下列结论中正确的个数是(  )
(1)f(x)在R一定单调递增;
(2)f(x)在R上不一定单调递增,但满足上述条件的所有f(x)一定存在递增区间;
(3)存在满足上述条件的f(x),但找不到递增区间;
(4)存在满足上述条件的f(x),既有递增区间又有递减区间.
A、3个B、2个C、1个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(x0)=1则
lim
△x→0
f(x0+△x)-f(x0)
2△x
的值为(  )
A、
1
2
B、1
C、2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=30.2,b=0.30.2,c=0.32,则(  )
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=2-
1
3
,b=log2
1
3
,c=log 
1
2
1
3
,则(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

同步练习册答案