精英家教网 > 高中数学 > 题目详情
已知数列{an}的通项公式an=log3
n
n+1
(n∈N*),设其前n项和为Sn,则使Sn<-4成立的最小自然数n等于(  )
A、83B、82C、81D、80
分析:由题意知Sn=log31-log32+log32-log33+…+log3n-log3(n+1)=-log3(n+1)<-4,由此可求出使Sn<-4成立的最小自然数n.
解答:解:Sn=log31-log32+log32-log33+…+log3n-log3(n+1)
=-log3(n+1)<-4,
解得n>34-1=80.
故选C.
点评:本题考查数列的性质和应用,解题时要认真审题,注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
1
Sn+n
,则数列{bn}的前n项和的取值范围为(  )
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=
an
bn+1
,其中a、b均为正常数,那么数列{an}的单调性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•东城区二模)已知数列{an}的通项公式是 an=
na
(n+1)b
,其中a、b均为正常数,那么 an与 an+1的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n-5,则|a1|+|a2|+…+|a10|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
1
n+1
+
n
求它的前n项的和.

查看答案和解析>>

同步练习册答案