精英家教网 > 高中数学 > 题目详情

【题目】曲线与两坐标轴的交点都在圆上,圆轴正半轴、轴正半轴分别交于两点.

(Ⅰ)求圆的方程;

(Ⅱ)过点作直线与圆交于两点,是否存在使得共线,如果存在求直线的方程,若不存在请说明理由.

【答案】(Ⅰ);(Ⅱ)存在,方程为.

【解析】

(Ⅰ)令,则,令,则,得到曲线与坐标轴交点为,再求圆的方程.

(Ⅱ)假设存在满足条件,当的斜率不存在时,不满足条件,当斜率存在时,设的方程为,联立,设,利用韦达定理求得 的坐标,再根据共线向量定理求解.

(Ⅰ)令,则

,则

曲线与坐标轴交点为

设圆心为,则

∴圆的方程为.

(Ⅱ)假设存在满足条件,

的斜率不存在时,不满足条件,

的斜率存在时,设的方程为

,则

由(1)知

共线,则

整理得

经检验,符合

∴存在的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015秋海口校级期中)直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周碑算经》一书作序时,介绍了勾股圆方图,又称赵爽弦图(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比赵爽弦图,可类似地构造如图(2)所示的图形,它是由3个全等的三角形与中间的一个小正三角形组成的一个大正三角形,设,若在大正三角形中随机取一点,则此点取自小正三角形的概率为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆左、右顶点分别为AB,上顶点为D(0,1),离心率为.

1)求椭圆C的标准方程;

2)若点E是椭圆C上位于x轴上方的动点,直线AEBE与直线分别交于MN两点,当线段MN的长度最小时,椭圆C上是否存在点T使的面积为?若存在,求出点T的坐标:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15.

1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;

平均车速超过的人数

平均车速不超过的人数

合计

男性驾驶员

女性驾驶员

合计

2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.

参考公式:

临界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)判断函数零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点N在曲线上,直线轴交于点,动点满足,记点的轨迹为

1)求的轨迹方程;

2)若过点的直线交于两点,点在直线 (为坐标原点),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知函数

(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)若函数f(x)在 上为单调增函数,求a的取值范围;

(3)设m,n为正实数,且m>n,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的定义域,并证明在定义域上是奇函数;

)若 恒成立,求实数的取值范围;

)当时,试比较的大小关系.

查看答案和解析>>

同步练习册答案