精英家教网 > 高中数学 > 题目详情
13.如图,A、B、C,O1,O2∈平面α,AB=BC=1,∠ABC=90°,D为动点,DC=$\sqrt{3}$,且DC⊥BC.当点D从O1顺时针转动到O2的过程中,异面直线AD与BC所成角的余弦值(  )
A.一直变小B.一直变大
C.先变小,后变大D.先变小,再变大,后变小

分析 由已知得到BC⊥平面O1DCO2,以C为原点,CB为x轴,CO2为y轴,过C作平面ABC的直线为z轴,建立空间直角坐标系,利用向量法能推导出当点D从O1顺时针转动到O2的过程中,异面直线AD与BC所成角的余弦值一直减小.

解答 解:∵A、B、C,O1,O2∈平面α,AB=BC=1,∠ABC=90°,D为动点,DC=$\sqrt{3}$,且DC⊥BC,
∴BC⊥平面O1DCO2
以C为原点,CB为x轴,CO2为y轴,过C作平面ABC的直线为z轴,建立空间直角坐标系,
则A(1,-1,0),B(1,0,0),C(0,0,0),D(0,y,z),其中-$\sqrt{3}≤y≤\sqrt{3}$,0$≤z≤\sqrt{3}$,
∴$\overrightarrow{AD}$=(-1,y+1,z),$\overrightarrow{BC}$=(-1,0,0),
∴cos<$\overrightarrow{AD},\overrightarrow{BC}$>=$\frac{1}{\sqrt{1+(y+1)^{2}+{z}^{2}}}$,
∵当点D从O1顺时针转动到O2的过程中,
y+1的取值从1$-\sqrt{3}$到1+$\sqrt{3}$逐渐增大,z的值先0逐渐增加到$\sqrt{3}$,再从$\sqrt{3}$逐渐减少到0,
∴异面直线AD与BC所成角的余弦值一直减小.
故选:A.

点评 本题考查异面直线所成角的余弦值的求法及应用,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设命题p:函数y=ax(a>0且a≠1)为减函数,命题q:关于x的方程x2-x+a=0有实数根,若p∨q为真,p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简:$\frac{2co{s}^{4}x-2co{s}^{2}x+\frac{1}{2}}{2tan(\frac{π}{4}-x)si{n}^{2}(\frac{π}{4}+x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一元二次方程x2-4x+a=0有两个实根,一个比3大,一个比3小,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则(  )
A.ab≤$\frac{1}{8}$B.ab≥$\frac{1}{8}$C.ab$≥\frac{1}{4}$D.ab$≤\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=lg(x2-2ax+2),若对任意的x1,x2∈(-∞,1]且x1≠x2,均有[f(x1)-f(x2)]( x1-x2 )<0成立,则实数a的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(1,$\frac{3}{2}$)D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A、B.过点A作PB的平行线,交⊙O于点C,连接PC,交⊙O于点E;连接AE,并延长AE交PB于点E,求证:PE•AC=CE•KB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一个几何体的三视图如图所示,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知以极点为原点,极轴为x轴正方向建立即坐标系,曲线C1的极坐标方程是ρ=4cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=2+tcosθ}\\{y=1+tsinθ}\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程;
(2)设直线l与曲线C1交于A,B两点,点M的直角坐标为(2,1),若$\overrightarrow{AB}$=3$\overrightarrow{MB}$,求直线l的普通方程.

查看答案和解析>>

同步练习册答案