精英家教网 > 高中数学 > 题目详情

【题目】1)若数列的前n项和,求数列的通项公式.

2)若数列的前n项和,证明为等比数列.

【答案】(1);(2)见解析

【解析】

(1)应用 (n求解,再验证,进而列出数列的通项公式.

(2)应用 (n,求得bn-1的关系,进而证明 为等比数列.

(1) 当n≥2时,an=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5,

n=1时,a1S1=3×12-2×1+1=2;

显然当n=1时,不满足上式.

故数列的通项公式为

(2)证明:由Tnbn,得当n≥2时,Tn-1bn-1

两式相减,得bnbnbn-1

∴当n≥2时,bn=-2bn-1

又n=1时,T1=b1b1,∴b1=1,

∴bn=(-2)n-1.b1=1,公比q=-2的等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】log0.72,log0.70.8,0.92的大小顺序是(
A.log0.72<log0.70.8<0.92
B.log0.70.8<log0.72<0.92
C.0.92<log0.72<log0.70.8
D.log0.72<0.92<log0.70.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25. (Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(Ⅱ)直线l的参数方程是 (t为参数),l与C交与A,B两点,|AB|= ,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)

男职工

女职工

总计

每周平均上网时间不超过4个小时

每周平均上网时间超过4个小时

70

总计

300

(Ⅰ)应收集多少名女职工样本数据?

(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:.试估计该公司职工每周平均上网时间超过4小时的概率是多少?

(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=ax2-4ax+1+ba0)的定义域为[23],值域为[14];设gx=

1)求ab的值;

2)若不等式g2x-k2x≥0在x[12]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知圆C过点P(1,1),且与圆M:关于直线对称.

(1)求圆C的方程:

(2)设Q为圆C上的一个动点,求最小值;

(3)过点P作两条相异直线分别与圆C交与A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与直线AB是否平行?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为改善职工的出行条件,随机抽取50名职工,调查他们的居住地与公司的距离d(单位:千米).若样本数据分组为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],由数据绘制的分布频率直方图如图所示,则样本中职工居住地与公司的距离不超过4千米的人数为人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】身体素质拓展训练中,人从竖直墙壁的顶点A沿光滑杆自由下滑到倾斜的木板上(人可看作质点),若木板的倾斜角不同,人沿着三条不同路径ABACAD滑到木板上的时间分别为t1t2t3,若已知ABACAD与板的夹角分别为70o90o105o,则(

A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能确定t1t2t3之间的关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求函数f(x)的定义域和值域;
(2)设F(x)= [f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若﹣m2+2tm+ ≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案