【题目】命题:关于的不等式的解集为,命题:函数为增函数,分别求出符合下列条件的实数的取值范围.
(1)为真命题;
(2)“”为真,“”为假.
【答案】(1);(2)
【解析】
试题一元二次不等式的二次项系数为正,说明抛物线的开口向上,不等式解集为空集,说明判别式小于0,解出命题p所表示的集合,指数函数为增函数说明底数大于1,解出命题q所表示的集合,若p或q为真命题,则p、q至少有一真,求出参数范围;“”为真,“”为假,说明p、q两个命题一真一假,分两种情况求出参数的范围.
试题解析:
命题p为真时,Δ=(a-1)2-4a2<0,即a> 或a<-1.①命题q为真时,2a2-a>1,即a>1或a<- .②
(1)当p∨q为真时,即p、q至少有一个是真命题,即上面两个范围的并集为 ;
∴“p∨q”为真时,a的取值范围是.
(2)当“p∨q”为真,“p∧q”为假,即p,q有且只有一个是真命题时,有两种情况:当p真q假时,<a≤1;当p假q真时,-1≤a<- .∴“p∨q”为真,“p∧q”为假时,a的取值范围是 .
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是椭圆的左顶点,经过左焦点的直线与椭圆交于, 两点,求与的面积之差的绝对值的最大值.(为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校为丰富师生课余活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地,如图,点在上,点在上,且点在斜边上,已知, 米, 米, .设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数)
(1)试用表示,并求的取值范围;
(2)求总造价关于面积的函数;
(3)如何选取,使总造价最低(不要求求出最低造价)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,在处取极大值,在处取极小值.
(1)若,求函数的单调区间和零点个数;
(2)在方程的解中,较大的一个记为;在方程的解中,较小的一个记为,证明:为定值;
(3)证明:当时,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上有最小值1,最大值9.
(1)求实数a,b的值;
(2)设,若不等式在区间上恒成立,求实数k的取值范围;
(3)设),若函数有三个零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.
5 | 6 | 5 | 8 | ||||||
6 | 0 | 1 | 3 | 6 | 2 | 4 | 6 | 9 | |
7 | 1 | 2 | 7 | 1 | 3 | ||||
8 | 0 | 1 | 8 | 1 | |||||
甲 | 乙 |
(1)分别求甲乙两个小组成绩的平均数与方差;
(2)分析比较甲乙两个小组的成绩;
(3)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在[80,90)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《聪明花开——莆仙话挑战赛》栏目共有五个项目,分别为“和一斗”“斗麻利”“文儒生”“放独步”“正功夫”.《聪明花开》栏目组为了解观众对项目的看法,设计了“你最喜欢的项目是哪一个”的调查问卷(每人只能选一个项目),对现场观众进行随机抽样调查,得到如下数据(单位:人):
和一斗 | 斗麻利 | 文儒生 | 放独步 | 正功夫 |
115 | 230 | 115 | 345 | 460 |
(1)在所有参与该问卷调查的人中,用分层抽样的方法抽取n人座谈,其中恰有4人最喜欢“斗麻利”,求n的值及所抽取的人中最喜欢“和一斗”的人数;
(2)在(1)中抽取的最喜欢“和一斗”和“斗麻利”的人中,任选2人参加栏目组互动,求恰有1人最喜欢“和一斗”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com