【题目】已知顶点为原点的抛物线,焦点在轴上,直线与抛物线交于、两点,且线段的中点为.
(1)求抛物线的标准方程.
(2)若直线与抛物线交于异于原点的、两点,交轴的正半轴于点,且有,直线,且和有且只有一个公共点,请问直线是否恒过定点?若是,求出定点坐标;若不是,说明理由.
【答案】(1);(2)是,直线过定点.
【解析】
(1)设抛物线的标准方程为,求出点的坐标,将点的坐标代入抛物线的方程,求出的值,由此可求得抛物线的标准方程;
(2)设点,,,由条件可得出,可求出直线的斜率,由此可设直线的方程为,与抛物线的方程联立,由可得出,分与两种情况讨论,求出直线的方程,即可得出直线所过定点的坐标.
(1)由题意设抛物线的标准方程为,
因为的中点为,所以的坐标为,
将点的坐标代入抛物线的方程,得,可得,
因此,抛物线的标准方程为;
(2)由(1)知,设,,
因为,则,
由,可得,即,所以,直线的斜率,
因为直线,设直线的方程为,
代入抛物线的方程可得,
因为且和有且只有一个公共点,可得,解得,
设,则,,即,
当时,,
可得直线的方程为,
由时,代入整理,即直线恒过定点;
当,直线的方程为,过点,
综上,可知直线过定点.
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)讨论函数的单调性;
(2)当时,证明曲线分别在点和点处的切线为不同的直线;
(3)已知过点能作曲线的三条切线,求,所满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥S一ABC中,△ABC与△SBC都是边长为1的正三角形,二面角A﹣BC﹣S的大小为,若S,A,B,C四点都在球O的表面上,则球O的表面积为( )
A.πB.πC.πD.3π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有9位身高各异的同学拍照留念,分成前后两排,前排4人,后排5人,要求每排同学的身高从中间到两边依次递减,则不同的排队方式有________种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的图象的一个最高点为(),与之相邻的一个对称中心为,将f(x)的图象向右平移个单位长度得到函数g(x)的图象,则( )
A.g(x)为偶函数
B.g(x)的一个单调递增区间为
C.g(x)为奇函数
D.函数g(x)在上有两个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由甲乙两位同学组成一个小组参加年级组织的篮球投篮比赛,共进行两轮投篮,每轮甲乙各自独立投篮一次,并且相互不受影响,每次投中得2分,没投中得0分.已知甲同学每次投中的概率为,乙同学每次投中的概率为
(1)求第一轮投篮时,甲乙两位同学中至少有一人投中的概率;
(2)甲乙两位同学在两轮投篮中,记总得分为随机变量ξ,求ξ的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2x,过点E(a,0)的直线l与C交于不同的两点P(x1,y1),Q(x2,y2),且满足y1y2=﹣4,以Q为中点的线段的两端点分别为M,N,其中N在x轴上,M在C上,则a=_____.|PM|的最小值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数若满足:①对任意、,都有;②对任意,都有,则称函数为“中心捺函数”,其中点称为函数的中心.已知函数是以为中心的“中心捺函数”,若满足不等式,当时,的取值范围为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com