精英家教网 > 高中数学 > 题目详情

【题目】某公园举办雕塑展览吸引着四方宾客,旅游人数与人均消费(元)的关系如下:

1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多?

2)若公园每天运营成本为5万元(不含工作人员的工资),还要上缴占旅游收入的税收,其余自负盈亏,目前公园的工作人员维持在40人,要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?(注:旅游收入=旅游人数×人均消费)

【答案】1)若游客客源充足,那么当天接待游客652人时,公园的旅游收入最多

2)要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在520人到778人之间

【解析】

(1)根据旅游收入旅游人数人均消费,把旅游人数与人均消费的分段函数式代入计算即可;

(2)考虑公园每天运营的最低成本为,可排除第一种情况;第二种情况应满足:旅游收入,求出的范围,从而得出旅游人数的范围.

(1)设当天的旅游收入为,那么,

;

,(,

,,

,元时,(,此时(,

故当天接待旅游人数为652人时旅游收入最多,最多收入为70416;

(2)要使工作人员平均每人每天的工资不低于100,并维持每天正常运营,

则每天的旅游收入上缴税收后应不低于,

,,显然不满足条件;

故由,,

,解得;

此时旅游人数满足:,

故每天的游客人数应控制在520人到778人之间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然底数),.

(1)当时,对任意的,都有不等式,求实数的取值范围;

(2)若函数上的减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是

A. 该几何体是由两个同底的四棱锥组成的几何体

B. 该几何体有12条棱、6个顶点

C. 该几何体有8个面,并且各面均为三角形

D. 该几何体有9个面,其中一个面是四边形,其余均为三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个口袋有个白球,个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为的抽屉内.

(1)求编号为的抽屉内放黑球的概率;

(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分) 如图,的外接圆的半径为所在的平面,,且

1)求证:平面ADC平面BCDE

2)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为?若存在,

确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分15)已知中心在原点O,焦点在x轴上,离心率为的椭圆过点()

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设不过原点O的直线l与该椭圆交于PQ两点,满足直线OPPQOQ的斜率依次成等比数列,求OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的是(

A.半圆弧以其直径为轴旋转一周所形成的曲面叫做球

B.直角三角形绕一直角边为轴旋转一周得到的旋转体是圆锥

C.夹在圆柱的两个平行截面间的几何体还是一个旋转体

D.用一个平面截圆锥底面与截面组成的部分是圆台

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列的前项和为,且。数列的前项和为,且

(1)求数列的通项公式及其前项和

(2)证明数列为等差数列,并求出的通项公式;

(3)设数列,问是否存在正整数 ,使得成等差数列,若存在,求出所有满足要求的;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知动点都在曲线为参数,是与无关的正常数)上,对应参数分别为的中点.

(1)求的轨迹的参数方程;

(2)作一个伸压变换:,求出动点点的参数方程,并判断动点的轨迹能否过点.

查看答案和解析>>

同步练习册答案