精英家教网 > 高中数学 > 题目详情
4.某社区调查了老年大学全部48名学员参加书法班和演讲班的情况,数据如表:(单位:人)
参加书法班未参加书法班
参加演讲班85
未参加演讲班233
(I)从该老年大学随机选1名学员,求该学员至少参加上述一个班的概率;
(II)在既参加书法班又参加演讲班的8名学员中,有5名男学员A1,A2,A3,A4,A5,3名女学员B1,B2,B3.现从这5名男学员和3名女学员中各随机选1人,求A1被选中且B1未被选中的概率.

分析 (I)由调查数据可知,既未参加书法班又未参加演讲班的有33人,故至少参加上述一个班的共有48-33=15人,由此能求出从该老年大学随机选1名学员,该学员至少参加上述一个班的概率.
(II)从这5名男学员和3名女学员中各随机选1人,其一切的可能结果组成的基本事件有n=5×3=15个,再用列举法求出事件“A1被选中且B1未被选中”所包含的基本事件的个数,由此能求出A1被选中且B1未被选中的概率.

解答 解:(I)由调查数据可知,既未参加书法班又未参加演讲班的有33人,
故至少参加上述一个班的共有48-33=15人,
所以从该老年大学随机选1名学员,
该学员至少参加上述一个班的概率为$p=\frac{15}{48}=\frac{5}{16}$.(4分)
(II)从这5名男学员和3名女学员中各随机选1人,
其一切的可能结果组成的基本事件有n=5×3=15个,
根据题意,这些基本事件的出现是等可能的,
事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3}共2个.
因此,A1被选中且B1未被选中的概率为p=$\frac{2}{15}$.(10分)

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,∠A1AC=60°,M,N分别是线段AA1,BC上的点,且NC=NB,AA1⊥平面BCM.
(1)求证:AN∥平面BC1M;
(2)求二面角M-BC1-B1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一个最高点的坐标为($\frac{π}{3}$,3),且当x1+x2=$\frac{7π}{6}$时,满足f(x1)=-f(x2).
(1)当函数f(x)的周期最大时,求f(x)的单调递增区间;
(2)在(1)的条件下,将函数f(x)的图象上每个点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,再将所得函数图象向左平移$\frac{π}{12}$得到函数g(x)的图象,求函数g(x)在[$\frac{π}{24}$,$\frac{7π}{24}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.斜率为1的动直线L与椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$交于P,Q两点,M是L上的点,且满足|MP|•|MQ|=2,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-x2+x+2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a>0,求f(x)在区间(0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\vec a$,$\vec b$的夹角为$\frac{π}{3}$,且$\vec a•(\vec a-\vec b)=1$,$|\vec a|=2$,则$|\vec b|$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)={x^3}-{x^2}+({2\sqrt{2}-3})x+3-2\sqrt{2}$,f(x)与x轴依次交于点A、B、C,点P为f(x)图象上的动点,分别以A、B、C,P为切点作函数f(x)图象的切线.
(1)点P处切线斜率最小值为2$\sqrt{2}$-$\frac{10}{3}$
(2)点A、B、C处切线斜率倒数和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知4a=9b=k,且$\frac{1}{a}+\frac{1}{b}$=2,则k的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某几何体的三视图如图所示,其中俯视图中的弧线是半径为1的四分之一个圆弧,则该几何体的表面积为4.

查看答案和解析>>

同步练习册答案