【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在, , , , , (单位:克)中,其频率分布直方图如图所示.
(1)按分层抽样的方法从质量落在, 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元/千克收购;
B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.
请你通过计算为该村选择收益最好的方案.
【答案】(1);(2)见解析
【解析】【试题分析】(1) 在, 的蜜柚中各抽取个和个.利用列举法求得基本时间的总数为种,其中符合题意的有种,故概率为.(2)首先计算出各组数据对应的频率,然后分别计算方案的总收益和方案的总收益,得出方案点的总收益高于方案的总收益,所以选择方案.
【试题解析】
(1)由题得蜜柚质量在和的比例为,
∴应分别在质量为, 的蜜柚中各抽取2个和3个.
记抽取质量在的蜜柚为, ,质量在的蜜柚为, , ,
则从这5个蜜柚中随机抽取2个的情况共有以下10种:
, , , , , , , , , ,
其中质量均小于2000克的仅有这1种情况,故所求概率为.
(2)方案好,理由如下:
由频率分布直方图可知,蜜柚质量在的频率为,同理,蜜柚质量在, , , 的频率依次为0.1,0.15,0.4,0.2,0.05.
若按方案收购:
根据题意各段蜜柚个数依次为500,500,750,2000,1000,250,
于是总收益为
(元)
若按方案收购:
∵蜜柚质量低于2250克的个数为,
蜜柚质量低于2250克的个数为,
∴收益为 元.
∴方案的收益比方案的收益高,应该选择方案.
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
Ⅰ当时,恒成立,求a的取值范围;
Ⅱ设是定义在上的函数,在内任取个数,,,,,设,令,,如果存在一个常数,使得恒成立,则称函数在区间上的具有性质P.试判断函数在区间上是否具有性质P?若具有性质P,请求出M的最小值;若不具有性质P,请说明理由.注:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义域为R的奇函数,其中m是常数.
(Ⅰ)判断f(x)的单调性,并用定义证明;
(Ⅱ)若对任意x∈[﹣3,1],有f(tx)+f(2t﹣1)≤0恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品销售价格和销售量与销售天数有关,第x天的销售价格(元/百斤),第x天的销售量(百斤)(a为常数),且第7天销售该商品的销售收入为2009元.
(1)求第10天销售该商品的销售收入是多少?
(2)这20天中,哪一天的销售收入最大?为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某池塘中原有一块浮草,浮草蔓延后的面积(平方米)与时间(月)之间的函数关系式是且,它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是平方米;②第个月浮草的面积超过平方米;③浮草每月增加的面积都相等;④若浮草面积达到平方米,平方米,平方米所经过的时间分别为,则.其中正确命题的序号有_____.(注:请写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)将圆C的方程化为标准方程,并写出圆C的圆心坐标及半径r;
(2)求过点A的圆的切线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com